Volume 9, Issue 21 (11-2018)                   rap 2018, 9(21): 93-104 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi P, Nazemi Rafie J, Rostamzadeh J. (2018). Evaluation of Phylogenetic Characteristics of Iranian Honeybee (Apis mellifera meda) Populations based on Mitochondrial ND2 Gene. rap. 9(21), 93-104. doi:10.29252/rap.9.21.93
URL: http://rap.sanru.ac.ir/article-1-925-en.html
Abstract:   (3839 Views)
For the identification of phylogenetic characteristics of honeybee populations, sampling was conducted from 31 provinces of Iran in spring and summer 2016. Phylogenetic characteristics were evaluated based on mitochondrial ND2 gene. The intergenic regions between ND2 and COI genes were compared in different populations of honeybees. After sequencing and alignment of the genes, the relationships among populations were analyzed by MrBayes 3.2 and PAUP 4.0 b10 softwares. Eight nucleotide differences were found among Iranian populations of honey bee (A. m.meda). The phylogenetic tree was drawn and Iranian populations of honeybee (A.m.meda) were divided into four groups. The results showed that samples of East Azarbaijan and Yazd were separated from other honeybee populations. In addition, these two honeybee populations had the highest intergenic region (ITS2 with 70 nucleotides). Not only, populations of Charmahal Bakhtiari, Tehran, Sistan and Blochestan, Mazandaran, Lorestan, Kordestan, Kermanshah, Kohkeloye and Boyerahmad, Southern Khorasan, Ilam, Golestan and Gazvin were grouped with each other but also, ITs2 lengths of these populations were 62 bp. ITs2 Lengths were 59 to 70 bp. ITs1 lengths were 20 bp except syriaca subspecies. The shortest length of intergenic region was related with ITs3 (with two nucleotides AT). Populations of Ardabil, Zanjan and Kerman were grouped with bootstrap of 91 percent. Additionally, populations of Alborze, Northern Khorasan, Razavi Khorasan, Esfahan, Shiraz, Semnan, Markazi, Khozestan, Hormozgan, Hamedan, Qom, Boshehr and Western Azarbayejan were grouped with each other. The honeybee populations were compared using two-parameter Kimura method. Results demonstrated that there was no nucleotide difference between Gilan population and A. m.carnica subspecies. The collected samples from Gilan were not A.m.meda subspecies and were grouped with A.m.carnica subspecies. A.m.carnica is not a native subspecies therefore honeybee queens have been imported illegally by some beekeepers. A.m.intermissa and A.m.scutellata showed the most genetic distance (0.01) in comparison with Iranian populations of honeybee (A.m.meda). Population comparisons of Alborz, Shiraz, Semnan, Markazi, Khozestan, Hormozgan, Hamedan, Qom, Boshehr and Western Azarbayejan showed that there was no genetic difference among populations. The phylogenetic tree could differentiate syriaca, intermissa, scutellata and mellifera subspecies from carnica and meda subspecies based on ND2 gene. Moreover, A.m.ligustica was differentiated from A.m.carnica with a substitution C→T.
 
Full-Text [PDF 1764 kb]   (1166 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/04/19 | Revised: 2018/11/27 | Accepted: 2018/07/22 | Published: 2018/11/27

References
1. Ahmadi, A. and R. Ebadi. 2106. Rearing of Honeybee. 8rd edn., Arkan Danesh press, Tehran, Iran, 616pp (In Persian).
2. Arias, M.C. and W.S. Sheppard. 2005. Phylogenetic relationships of honeybees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution, 37(1): 25-35. [DOI:10.1016/j.ympev.2005.02.017]
3. Arias, M.C. and W.S. Sheppard. 1996. Molecular phylogenetics of honeybee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Molecular Phylogenetics and Evolution, 5(3): 557-566. [DOI:10.1006/mpev.1996.0050]
4. Bahador, Y., M. Mohammadabadi, K.H. Khezri, M. Asadi and L. Medhati. 2016. Study of genetic diversity in honey bee populations in kerman province using ISSR markers. Research on Animal Production, 7(13): 186-192 (In Persian). [DOI:10.18869/acadpub.rap.7.13.192]
5. Behura, S.K. 2007. Analysis of nuclear copies of mitochondrial sequences in honeybee (Apis mellifera) genome. Molecular Biology and Evolution, 24(7): 1492-1505. [DOI:10.1093/molbev/msm068]
6. Clarke, K.E., T.E. Rinderer, P. Frank, J.G. Quezada-Euan and P. Oldroyd. 2002. The africanization of the honeybees (Apis mellifera L.) of the Yukatan: A study of a massive hybridization event across time. Evolution, 56(7): 1462-1474. [DOI:10.1111/j.0014-3820.2002.tb01458.x]
7. Cornuet, J.M., L. Garnery and M. Solignac. 1991. Putative origin and function of the intergenic region between COI and COII of Apis mellifera L. mitochondrial DNA. Genetics, 128(2): 393-403.
8. Dawnay, N., R. Ogden, R. McEwing, G.R. Carvalho and R.S. Thorpe. 2007. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Science International, 173(1): 1-6. [DOI:10.1016/j.forsciint.2006.09.013]
9. De La Rua, P., R. Jaffe, R. DallOlio, I. Munoz and J. Serrano. 2009. Biodiversity, conservation and current threats to European honeybees. Apidologie, 40(3): 263-284. [DOI:10.1051/apido/2009027]
10. Dizkirici, A., Z. Kaya, E. Cabi and M. Dogan. 2010. Phylogenetic relationships of Elymus L. and related genera (Poaceae) based on the nuclear ribosomal internal transcribed spacer sequences. Turkish Journal of Botany, 34(6): 467-478.
11. Evans, D.J., R.S. Schwarz, Y.P. Chen, G. Budge, R,S. Cornman, P. Delarua, J. Miranda, S. Foret, L. Foster, L. Gauthier, E. Genersch, S. Gisder, A. Jarosch, R. Kocharski, D. Lopez, D.M. Lun, R. Moritz, R. Maleszka, I. Munoz and M.A. Pinto. 2013. Standard methods for molecular research in Apis mellifera. Journal of Apicultural Research, 52(4): 8-15. [DOI:10.3896/IBRA.1.52.4.11]
12. Frankham, R., J.D. Ballou, M.R. Dudash, M.D. Eldridge, C.B. Fenster, R.C. Lacy and O.A. Ryder. 2012. Implications of different species concepts for conserving biodiversity. Biological Conservation, 153: 25-31. [DOI:10.1016/j.biocon.2012.04.034]
13. Jabbari Farhoud, H. and M. Kence. 2005. Morphometric and MtDNA Analysis in honeybee populations (Apis melifera L.) of north and northwest Iran. Proceedings of the Balkan scientific conference of biology in Plovdiv, Bulgaria, 5(2): 594-597.
14. Jamshidi, M., A. Nejati, R. Ebadi and G.H. Tahmasebi. 2008. Estimating phenotypic correlation between several traits of honeybee population in Tehran, Markazi, Ghazvin and Isfahan provinces of Iran. Pajouhesh and Sazandegi, 79: 36-44 (In Persian).
15. Jensen, A.B., K.A. Palmer, J.J. Boomsma and B.V. Pedersen. 2005. Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe. Molecular Ecology, 14(1): 93-106. [DOI:10.1111/j.1365-294X.2004.02399.x]
16. Kandemir, I., M. Kence, W.S. Sheppard and A. Kence. 2006. Mitochondrial DNA variation in honeybee (Apis mellifera L.) populations from Turkey. Journal of Apicultural Research, 45(1): 33-38. [DOI:10.1080/00218839.2006.11101310]
17. Kandemir, I., M.D. Meixner and W.S. Sheppard. 2003. Morphometric, allozymic, and mtDNA variation in honeybee (Apis mellifera cypria, Pollman 1879) populations in northern Cyprus. Final Program and Book of Abstracts. In 38th Apimondia International Apicultural Congress, 798 pp.
18. Mayer, E. and P.D. Ashlock. 1991. Principles of systematic zoology. McGraw-Hill. New York, 475 pp.
19. Miguel, I., M. Baylac, M. Iriondo, C. Manzano, L. Garnery and A. Estonba. 2011. Both geometric morphometric and microsatellite data consistently support the differentiation of the Apis mellifera M evolutionary branch. Apidologie, 42: 150-161. [DOI:10.1051/apido/2010048]
20. Moretto, G. and M.C. Arias. 2005. Detection of mitochondrial DNA restriction site differences between the subspecies of Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Neotropical Entomology, 34(3): 381-385. [DOI:10.1590/S1519-566X2005000300004]
21. Moritz, C., J.L. Patton, C.J. Schneider and T.B. Smith. 2000. Diversification of rainforest faunas: an integrated molecular approach. Annual review of ecology and systematics, 31(1): 533-563. [DOI:10.1146/annurev.ecolsys.31.1.533]
22. Ozdil, F., M.A. Yildiz and H.G. Hall. 2009. Molecular characterization of Turkish honeybee populations (Apis mellifera) inferred from mitochondrial DNA RFLP and sequence results. Apidologie, 40(5): 570-576. [DOI:10.1051/apido/2009032]
23. Rahimi, A., A. Mirmoayedi, D. Kahrizi, R. Abdolshahi, E. Kazemi and K. Yari. 2014. Microsatellite genetic diversity of Apis mellifera meda skorikov. Molecular Biology Reports, 41(12): 7755-7761. [DOI:10.1007/s11033-014-3667-7]
24. Ruttner, F. 1988. Breeding techniques and selection from breeding of the honeybee British Isles Bee populations. Journal of Apicultural Reseach, 46 (4): 225-231.
25. Ruttner, F. 1978. Biogeography and Taxonomy of honeybee. Springer-Verlag Berlin Heidelberg New York, 284 pp.
26. Ruttner, F., D. Pourasghar and D. Kauhausen. 1985. Die honigbienen des Iran 2. Apis mellifera meda Skorikow, die Persische Biene. Apidologie, 16(3): 241-264. [DOI:10.1051/apido:19850302]
27. Safai, M. 2013. Genetic Diversity Assessment of Iranian honey bee population using microsatellite markers. Ms.C. Thesis, Faculty of Agriculture, University of Isfahan, Iran, 156 pp (in Persian).
28. Shahrestani, N. 2012. Honeybee and rearing. 18rd edn., Sepehr press, Tehran, Iran, 455pp (In Persian).
29. Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87(6): 651-701. [DOI:10.1093/aesa/87.6.651]
30. Strange, J.P., L. Garnery and W.S. Sheppard. 2007. Morphological and molecular characterization of the landes honeybee (Apis mellifera L.) ecotype for genetic conservation. Journal of Insect Conservation, 12: 527-537. [DOI:10.1007/s10841-007-9093-6]
31. Swofford, D.L. 2003. PAUP: phylogenetic analysis using parsimony, version, 4-10.
32. Tahmasebi, G.H., R. Ebadi, N. Tajabadi, M. Akhondi and S. Faraji. 2002. The Effects of Geographical and climatological Cconditions on the morphological variation and separation of iranian small honeybee (Apis florea F.) Populations. Journal of Sciences and Technology of Agriculture and Natural Resources, 2: 169-176 (In Persian).
33. Tahmasebi, G.H., R. Ebadi, M. Esmaili and j. Kambozia. 1998. Morphologic study of Apis mellifera in Iran. Journal of Agriculture and Natural Resource, 2: 89-101 (In Persian).
34. Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725-2729. [DOI:10.1093/molbev/mst197]
35. Zayed, A. 2009. Bee genetics and conservation. Apidologie, 40(3): 237-262. [DOI:10.1051/apido/2009026]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb