Volume 8, Issue 18 (3-2018)                   rap 2018, 8(18): 121-130 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Najafi M, Rahimi-Mianji G, Guo Y, Jhamat N, Andersson G, Humblot P et al . (2018). Differential Gene Expression Analysis in Bovine Endometrial Epithelial Cells Following by E. Coli LPS Challenge. rap. 8(18), 121-130. doi:10.29252/rap.8.18.121
URL: http://rap.sanru.ac.ir/article-1-905-en.html
Abstract:   (4326 Views)
Lipopolysaccharide is a component of outer membrane of gram-negative bacteria involved in the pathogenic process leading to mastitis and metritis in dairy cattle. Additionally, LPS could be caused endometrium inflammation and implantation failure in many animal species. Based on economic importance of these diseases in dairy cattle industry, analysis of differential gene expression (DGE) and also detection of related pathways in LPS challenge using transcriptome analysis is essential in understanding the mechanism of process. In the present study, after separation of endometrial epithelial cells, and expose them with different doses of LPS (0, 2 and 8 mg/ml), total RNA was extracted and was used for transcriptome libraries preparation. In general, 12 samples (four samples per cow) were sequenced by high throughput technology from three Swedish Red breed cows. The DGE and also biological pathways were identified. The results of present study showed that 2035 genes differentially were expressed between control and treated groups which 752 genes involved in cell proliferation and apoptosis pathway. Additionally, the results of counted epithelial cells have shown that LPS could be significantly increased cell proliferation. Biological pathway analysis showed that some signaling pathways related to immune system such as Toll-like receptor, T cell receptor, MAPK signaling pathway, chemokine signaling pathways, endometrial cancer pathway and also apoptosis and cell proliferation signaling pathways involved in this challenge. According to our knowledge, this study is the first research that has been done in bovine endometrial epithelial cells which can increase our understanding related to the mechanisms of inflammations caused by uterine infections in dairy cattle.
Full-Text [PDF 908 kb]   (2083 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/02/28 | Revised: 2018/03/3 | Accepted: 2018/02/28 | Published: 2018/02/28

References
1. Windig, J., M. Calus, B. Beerda and R. Veerkamp. 2006. Genetic correlations between milk production and health and fertility depending on herd environment. Journal Of Dairy Science, 89: 1765-1775. [DOI:10.3168/jds.S0022-0302(06)72245-7]
2. Sheldon, I.M., G.S. Lewis, S. LeBlanc and R.O. Gilbert. 2006. Defining postpartum uterine disease in cattle. Theriogenology, 65: 1516-1530. [DOI:10.1016/j.theriogenology.2005.08.021]
3. Gilbert, R.O., S.T. Shin, C.L. Guard, H.N. Erb and M. Frajblat. 2005. Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology, 64: 1879-1888. [DOI:10.1016/j.theriogenology.2005.04.022]
4. Maizon, D., P. Oltenacu, Y. Gröhn, R. Strawderman and U. Emanuelson. 2004. Effects of diseases on reproductive performance in Swedish Red and White dairy cattle. Preventive Veterinary Medicine, 66: 113-126. [DOI:10.1016/j.prevetmed.2004.09.002]
5. Földi, J., M. Kulcsar, A. Pecsi, B. Huyghe, C. DeSa, J. Lohuis, P. Cox and G. Huszenicza. 2006. Bacterial complications of postpartum uterine involution in cattle. Animal Reproduction Science, 96: 265-281. [DOI:10.1016/j.anireprosci.2006.08.006]
6. Barbosa-Cesnik, C., K. Schwartz and B. Foxman. 2003. Lactation mastitis. Jama, 289: 1609-1612. [DOI:10.1001/jama.289.13.1609]
7. Hogeveen, H., K, Huijps and T. Lam. 2011. Economic aspects of mastitis: New developments. New Zealand Veterinary Journal, 59: 16-23. [DOI:10.1080/00480169.2011.547165]
8. Sordillo, L.M. and K.L. Streicher. 2002. Mammary gland immunity and mastitis susceptibility. Journal of Mammary Gland Biology and Neoplasia, 7: 135-146. [DOI:10.1023/A:1020347818725]
9. Sheldon, I.M., E.J. Williams, A.N. Miller., D.M. Nash and S. Herath. 2008. Uterine diseases in cattle after parturition. The Veterinary Journal, 176: 115-121. [DOI:10.1016/j.tvjl.2007.12.031]
10. Cronin, J.G., M.L. Turner, L. Goetze, C.E. Bryant and I.M. Sheldon. 2012. Toll-like receptor 4 and MYD88-dependent signaling mechanisms of the innate immune system are essential for the response to lipopolysaccharide by epithelial and stromal cells of the bovine endometrium. Biology of Reproduction, 86: 51. [DOI:10.1095/biolreprod.111.092718]
11. Sheldon, I.M. and M.H. Roberts. 2010. Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium. PLoS ONE, 5: e12906. [DOI:10.1371/journal.pone.0012906]
12. Herath, S., E.J. Williams, S.T. Lilly, R.O. Gilbert, H. Dobson, C.E. Bryant and I.M. Sheldon. 2007. Ovarian follicular cells have innate immune capabilities that modulate their Endocrine Function. Reproduction, 134: 683-693. [DOI:10.1530/REP-07-0229]
13. Sheldon, I., D. Noakes, A. Rycroft, D. Pfeiffer and H. Dobson. 2002. Influence of uterine bacterial contamination after parturition on ovarian dominant follicle selection and follicle growth and function in cattle. Reproduction, 123: 837-845. [DOI:10.1530/reprod/123.6.837]
14. Williams, E.J., K. Sibley, A.N. Miller, E.A. Lane, J. Fishwick, D.M. Nash, S. Herath, G.C. England, H. Dobson and I.M. Sheldon. 2008. The effect of Escherichia coli lipopolysaccharide and tumour necrosis factor alpha on ovarian function. American Journal of Reproductive Immunology, 60:462-473. [DOI:10.1111/j.1600-0897.2008.00645.x]
15. Lavon, Y., G. Leitner, E. Klipper, U. Moallem, R. Meidan and D. Wolfenson. 2011. Subclinical, chronic intramammary infection lowers steroid concentrations and gene expression in bovine preovulatory follicles. Domestic Animal Endocrinology, 40:98-109. [DOI:10.1016/j.domaniend.2010.09.004]
16. Selsted, M.E. and A.J. Ouellette. 2005. Mammalian defensins in the antimicrobial immune response. Nature Immunology, 6: 551-557. [DOI:10.1038/ni1206]
17. Akira, S., S. Uematsu and O. Takeuchi. 2006. Pathogen recognition and innate immunity. Cell, 124: 783-801. [DOI:10.1016/j.cell.2006.02.015]
18. Herath, S., D.P. Fischer, D. Werling, E.J. Williams, S.T. Lilly, H. Dobson, C.E. Bryant and I.M. Sheldon. 2006. Expression and function of Toll-like receptor 4 in the endometrial cells of the uterus. Endocrinology, 147: 562-570. [DOI:10.1210/en.2005-1113]
19. Goldammer, T., H. Zerbe, A. Molenaar, H.J. Schuberth, R. Brunner, S. Kata and H.M. Seyfert. 2004. Mastitis increases mammary mRNA abundance of β-defensin 5, toll-like-receptor 2 (TLR2) and TLR4 but not TLR9 in cattle. Clinical and Diagnostic Laboratory Immunology, 11: 174-185. [DOI:10.1128/CDLI.11.1.174-185.2004]
20. Schmitz, S., M. Pfaffl, H. Meyer and R. Bruckmaier. 2004. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domestic Animal Endocrinology, 26: 111-126. [DOI:10.1016/j.domaniend.2003.09.003]
21. Bannerman, D.D., M.J. Paape, J.W. Lee, X. Zhao, J.C. Hope and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and Diagnostic Laboratory Immunology, 11: 463-472. [DOI:10.1128/CDLI.11.3.463-472.2004]
22. Esteve-Codina, A., R. Kofler, N. Palmieri, G. Bussotti, C. Notredame and M. Pérez-Enciso. 2011. Exploring the gonad transcriptome of two extreme male pigs with RNA-seq. BMC Genomics, 12: 11-15. [DOI:10.1186/1471-2164-12-552]
23. Verspohl, E.J. and J. Podlogar. 2012. LPS-induced proliferation and chemokine secretion from BEAS-2B cells. Pharmacology & Pharmacy, 3(2): 34-37. [DOI:10.4236/pp.2012.32024]
24. Ulmer, A.J., H.D. Flad, T. Rietschel and T. Mattern. 2000. Induction of proliferation and cytokine production in human T lymphocytes by lipopolysaccharide (LPS). Toxicology, 152: 37-45. [DOI:10.1016/S0300-483X(00)00290-0]
25. Zhang, L., M. Rees and R. Bicknell. 1995. The isolation and long-term culture of normal human endometrial epithelium and stroma. Expression of mRNAs for angiogenic polypeptides basally and on oestrogen and progesterone challenges. Journal of Cell Science, 108: 323-331.
26. Andrews, S. 2010. FastQC: A quality control tool for high throughput sequence data. Reference Source.
27. Bolger, A.M., M. Lohse and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 67: 170-175. [DOI:10.1093/bioinformatics/btu170]
28. Dobin, A., C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson and T.R. Gingeras. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29: 15-21. [DOI:10.1093/bioinformatics/bts635]
29. Love, M.I., W. Huber and S. Anders. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology, 15: 110-114. [DOI:10.1186/s13059-014-0550-8]
30. Wellnitz, O., E. Arnold and R. Bruckmaier. 2011. Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland. Journal of Dairy Science, 94: 5405-5412. [DOI:10.3168/jds.2010-3931]
31. Krikun, G., J. Trezza, J. Shaw, M. Rahman, S. Guller, V.M. Abrahams and C.J. Lockwood. 2012. Lipopolysaccharide Appears to Activate Human Endometrial Endothelial Cells Through TLR‐4‐Dependent and TLR‐4‐Independent Mechanisms. American journal of reproductive immunology, 68: 233-237. [DOI:10.1111/j.1600-0897.2012.01164.x]
32. Liu, L., Y. Lin, L. Liu, Y. Bian, L. Zhang, X. Gao and Q. Li. 2015. 14-3-3γ regulates lipopolysaccharide-induced inflammatory responses and lactation in dairy cow mammary epithelial cells by inhibiting NF-κB and MAPKs and up-regulating mTOR signaling. International Journal of Molecular Sciences, 16: 16622-16641. [DOI:10.3390/ijms160716622]
33. Zhao, M., A. Zhou, L. Xu and X. Zhang. 2014. The role of TLR4-mediated PTEN/PI3K/AKT/NF-κB signaling pathway in neuroinflammation in hippocampal neurons. Neuroscience, 269: 93-101. [DOI:10.1016/j.neuroscience.2014.03.039]
34. Butchar, J.P., K.V. Parsa, C.B. Marsh and S. Tridandapani. 2006. Negative regulators of toll-like receptor 4-mediated macrophage inflammatory response. Current Pharmaceutical Design, 12: 4143-4153. [DOI:10.2174/138161206778743574]
35. Goodier, M.R. and M. Londei. 2000. Lipopolysaccharide stimulates the proliferation of human CD56+ CD3− NK cells: a regulatory role of monocytes and IL-10. The Journal of Immunology, 165: 139-147. [DOI:10.4049/jimmunol.165.1.139]
36. Tulic, M.K., J.J. Manoukian, D.H. Eidelman and Q. Hamid. 2002. T-cell proliferation induced by local application of LPS in the nasal mucosa of nonatopic children. Journal of allergy and Clinical Immunology, 110: 771-776. [DOI:10.1067/mai.2002.128857]
37. Wiktorowska-Owczarek, A., M. Namiecińska and J. Owczarek. 2015. The effect of ibuprofen on bfgf, vegf secretion and cell proliferation in the presence of LPS in hmec-1 cells. Acta Poloniae Pharmaceutica, 72: 889-894.
38. Toda, K., N. Kumagai, K. Tsuchimoto, H. Inagaki, T. Suzuki, T. Oishi, K. Atsukawa, H. Saito, T. Morizane and T. Hibi. 2000. Induction of hepatic stellate cell proliferation by LPS-stimulated peripheral blood mononuclear cells from patients with liver cirrhosis. Journal of Gastroenterology, 35: 214-220. [DOI:10.1007/s005350050333]
39. Niranjan, R., R. Nagarajan, K. Hanif, C. Nath and R. Shukla. 2014. LPS induces mediators of neuroinflammation, cell proliferation, and GFAP expression in human astrocytoma cells U373MG: the anti-inflammatory and anti-proliferative effect of guggulipid. Neurological Sciences, 35: 409-414. [DOI:10.1007/s10072-013-1530-6]
40. He, Z., Y. Gao, Y. Deng, W. Li, Y. Chen, S. Xing, X. Zhao, J. Ding and X. Wang. 2012. Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS ONE, 7: e35926. [DOI:10.1371/journal.pone.0035926]
41. Español, A., M. Maddaleno, M. Lombardi, M. Cella, P. Martinez Pulido and M. Sales. 2014. Treatment with LPS plus INF‐γ induces the expression and function of muscarinic acetylcholine receptors, modulating NIH3T3 cell proliferation: participation of NOS and COX. British Journal of Pharmacology, 171: 5154-5167. [DOI:10.1111/bph.12834]
42. Knapp, M., E. Severinson-Gronowicz, J. Schröder and S. Strober. 1979. Characterization of a Spontaneous Murine B Cell Leukemia .BCL1. II. Tumor Cell Proliferation and IgM Secretion After Stimulation by LPS. The Journal of Immunology, 123: 1000-1006.
43. Marcia Delattre, A., B. Carabelli, M. Aurélio Mori, C. Pudell, D. RBL da Silva, I. Menezes, P.R.G. Kempe, P. Vinícius Staziaki, P.A. Dombrowski and C. da Cunha. 2013. Multiple intranigral unilateral LPS infusion protocol generates a persistent cognitive impairment without cumulative dopaminergic impairment. CNS & Neurological Disorders-Drug Targets .Formerly Current Drug Targets-CNS & Neurological Disorders, 12: 1002-1010. [DOI:10.2174/18715273113129990074]
44. Yokota, S.I., T. Okabayashi, M. Rehli, N. Fujii and K.I. Amano. 2010. Helicobacter pylori lipopolysaccharides upregulate toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway. Infection and Immunity, 78: 468-476. [DOI:10.1128/IAI.00903-09]
45. Lin, T.Y., C.W. Fan, M.C. Maa and T.H. Leu. 2015. Lipopolysaccharide-promoted proliferation of Caco-2 cells is mediated by c-Src induction and ERK activation. BioMedicine, 5: 5-10. [DOI:10.7603/s40681-015-0005-x]
46. Park, J., G.J. Gores and T. Patel. 1999. Lipopolysaccharide induces cholangiocyte proliferation via an interleukin‐6-mediated activation of p44/p42 mitogen‐activated protein kinase. Hepatology, 29: 1037-1043. [DOI:10.1002/hep.510290423]
47. Chen, G.Y., J. Tang, P. Zheng and Y. Liu. 2009. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science, 323: 1722-1725. [DOI:10.1126/science.1168988]
48. O'Hara, S.P., P.L. Splinter, C.E. Trussoni, G.B. Gajdos, P.N. Lineswala and N.F. LaRusso. 2011. Cholangiocyte N-Ras protein mediates lipopolysaccharide-induced interleukin 6 secretion and proliferation. Journal of Biological Chemistry, 286: 30352-30360. [DOI:10.1074/jbc.M111.269464]
49. Eslani, M., A. Movahedan, N. Afsharkhamseh, H. Sroussi and A.R. Djalilian. 2014. The role of toll-like receptor 4 in corneal epithelial wound healingtlr4 in corneal epithelial wound healing. Investigative Ophthalmology & Visual Science, 55: 6108-6115. [DOI:10.1167/iovs.14-14736]
50. Basso, F.G., D. Soares, T. Pansani, A. Turrioni, D. Scheffel, C. de Souza Costa and J. Hebling. 2015. Effect of LPS treatment on the viability and chemokine synthesis by epithelial cells and gingival fibroblasts. Archives of Oral Biology, 60: 1117-1121. [DOI:10.1016/j.archoralbio.2015.04.010]
51. Li, L., W. Shoji, H. Takano, N. Nishimura, Y. Aoki, R. Takahashi, S. Goto, T. Kaifu, T. Takai and M. Obinata. 2007. Increased susceptibility of MER5 .peroxiredoxin III. knockout mice to LPS-induced oxidative stress. Biochemical and Biophysical Research Communications, 355: 715-721. [DOI:10.1016/j.bbrc.2007.02.022]
52. Klunker, L., S. Kahlert, P. Panther, A.K. Diesing, N. Reinhardt, B. Brosig, S. Kersten, S. Dänicke, H.J R. Othkötter and J. Kluess. 2013. Deoxynivalenol and lipopolysaccharide alter epithelial proliferation and spatial distribution of apical junction proteins along the small intestinal axis. Journal of Animal Science, 91: 276-285. [DOI:10.2527/jas.2012-5453]
53. Daly, K.A., S.L. Mailer, M.R. Digby, C. Lefévre, P. Thomson, E. Deane, K.R. Nicholas and P. Williamson. 2009. Molecular analysis of tammar (Macropus eugenii) mammary epithelial cells stimulated with lipopolysaccharide and lipoteichoic acid. Veterinary Immunology and Immunopathology, 129: 36-48. [DOI:10.1016/j.vetimm.2008.12.001]
54. Freitag, A., A. Reimann, I. Wessler and K. Racké. 1996. Effects of bacterial lipopolysaccharides (LPS) and tumour necrosis factor-α (TNFα) on rat tracheal epithelial cells in culture: morphology, proliferation and induction of nitric oxide (NO) synthase. Pulmonary Pharmacology, 9: 149-156. [DOI:10.1006/pulp.1996.0017]
55. Hei, Z., A. Zhang, J. Wei, X. Gan, Y. Wang, G. Luo and X. Li. 2012. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function. Journal of Trauma and Acute Care Surgery, 73: 67-72. [DOI:10.1097/TA.0b013e318256a0fe]
56. Cohn, Z.J., A. Kim, L. Huang, J. Brand and H. Wang. 2010. Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neuroscience, 11: 11-15. [DOI:10.1186/1471-2202-11-72]
57. Calvinho, L.F., R.A. Almeida and S. Oliver. 2000. Influence of bacterial factors on proliferation of bovine mammary epithelial cells. Revista Argentina De Microbiologia, 33: 28-35.
58. Piotrowska-Tomala, K., M. Siemieniuch, A. Szóstek, A. Korzekwa, I. Woclawek-Potocka, A. Galváo, K. Okuda and D. Skarzynski. 2012. Lipopolysaccharides, cytokines, and nitric oxide affect secretion of prostaglandins and leukotrienes by bovine mammary gland epithelial cells. Domestic Animal Endocrinology, 43: 278-288. [DOI:10.1016/j.domaniend.2012.04.005]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb