Volume 10, Issue 23 (5-2019)                   rap 2019, 10(23): 11-21 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Saharkhiz bandforouzi K, Rezaei M, KazemiFard M. (2019). Effects of Different Levels of Tomato Powder with and without Addition of Enzymes on Performance, Blood Parameters and Antioxidant Status of Japanese Quails. rap. 10(23), 11-21. doi:10.29252/rap.10.23.11
URL: http://rap.sanru.ac.ir/article-1-888-en.html
Sari Agricultural Sciences and Natural Resources University
Abstract:   (3662 Views)
This experiment was conducted to investigate the effects of different levels of tomato powder (0, 4, 8 and 12%) and multi-enzyme Natuzyme-plus (0 and 0.05%) on performance, blood parameters and antioxidant status of Japanese quails during starter and growth periods. A total of 320 one day old chicks were used in 8 treatments with 4 replicates and 10 birds per experimental unit in a completely randomized design with 4×2 factorial arrangement. The results showed that the addition of different levels of tomato powder increased the feed intake (p<0.05) so that the increase in the treatment fed with 12% tomato powder was higher than other treatments. The interaction of tomato powder and Natuzyme enzyme was significant on weight gain and feed conversion ratio (p <0.05) and the treatment fed with 8% tomato powder and zero level of enzyme had the highest weight gain and best feed conversion ratio. The concentration of glucose, triglyceride, LDL, HDL, VLDL and hepatic enzymes of alanine aminotransferase and aspartate aminotransferase were also affected by the interaction between tomato powder and the enzymes of Natuzyme (p <0.05). In quails fed with 4% tomato powder and zero-enzyme level, the highest concentration of plasma glucose and the lowest concentration of enzymes of alanine aminotransferase and aspartate aminotransferase and superoxide dismutase were observed. Triglyceride and VLDL concentrations in the treatment with 12% tomato powder and enzyme, were less than other treatments, but in the treatment containing 12% tomato powder with zero level of enzyme, the lowest concentration of LDL and the highest HDL concentration were observed. Also, by adding different levels of tomato powder, the concentration of malondialdehyde and glutathione peroxidase enzyme respectivelly in groups fed with 4%  and 12% tomato powder were lower than other treatments (p<0.05). Based on the findings of research, it can be stated that adding tomato powder with enzyme to Japanese quail diet can improves the performance and strengthens the antioxidant activity.
Full-Text [PDF 2071 kb]   (951 Downloads)    
Type of Study: Research | Subject: تغذیه طیور
Received: 2018/02/27 | Revised: 2019/05/22 | Accepted: 2018/08/28 | Published: 2019/05/22

References
1. Agarwal, S. and A.V. Rao. 1998. Tomato lycopene and low density lipoprotein oxidation: A human dietary intervention study. Lipids, 33: 981-984. [DOI:10.1007/s11745-998-0295-6]
2. Akdemir, F., C. Orhan, N. Sahin, K. Sahin and A. Hayirli. 2012. Tomato powder in laying hen diets: effects on concentrations of yolk carotenoids and lipid peroxidation. British Poultry Science. 53: 675-680. [DOI:10.1080/00071668.2012.729142]
3. Alshatwi, A.A., M.A. Alobaaid, S.A. Alsedairy, A.H. Alassaf, J.J. Zhang and K.Y. Lei. 2010. Tomato powder is more protective than lycopene supplement against lipid peroxidation in rats. Nutrition Research, 30: 66-70. [DOI:10.1016/j.nutres.2009.12.002]
4. Alvarado, M., E. Pacheco-Delahaye, M. Schnell and P. Hevia. 1999. Dietary fiber in industrial tomato residue and its effects on glycaemic response and seric cholesterol in rats. Archivos Latinoamericanos de Nutricion, 49(2): 138-142.
5. AOAC. 1990. Official methods of analysis. 15th ed. Assoc. Off. Anal. Chem., Arlington.
6. Assi, J.A. and A.J. King. 2007. Assessment of selected antioxidants in tomato pomace subsequent to treatment with the edible oyster mushroom, Pleurotus ostreatus, under solid-state fermentation. Journal of Agricultural and Food Chemistry, 22: 9095-9098. [DOI:10.1021/jf070770v]
7. Beecher, G.R. 1998. Nutrient content of tomatoes and tomato products. Proceedings of the Society for Experimental Biology and Medicine, 218: 98-100. [DOI:10.3181/00379727-218-44282a]
8. Boileau, T.W.M., A.C. Boileau and J.W. Erdman. 2002. Bioavailability of all trans and cis-isomers of lycopene. Experimental Biology and medicine, 227: 914-919. [DOI:10.1177/153537020222701012]
9. Blum, A., M. Merei and A. Karem. 2006. Effects of tomatoes on the lipid profile. Clinical and Investigative Medicine, 29: 298-300.
10. Canene-Adams, K., J.K. Campbell, S. Zaripheh, E.H. Jeffery and J.W. Erdman. 2005. The tomato as a functional food. Journal Nutrition, 135: 1226-1230. [DOI:10.1093/jn/135.5.1226]
11. Chang, Y.L., D.O. Kim, K.W. Lee, H.J. Lee and C.Y. Lee. 2002. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agricultural and food chemistry, 50(13): 3713-3717. [DOI:10.1021/jf020071c]
12. DiMascio, P., S. Kaiser and S. Sies.1989. Lycopene as the most effective biological carotenoid singlet oxygen quencher. Archive of Biochemistry and Biophysics, 274: 532-538. [DOI:10.1016/0003-9861(89)90467-0]
13. Englmaierova, M., I. Bubancova, T. Vít and M. Skrivan. 2011. The effect of lycopene and vitamin E on growth performance, quality and oxidative stability of chicken leg meat. Czech Journal of Animal Science, 56(12): 536-543. [DOI:10.17221/4416-CJAS]
14. Fajri, M., R. Pirmohammadi and S.H. Hasanzadeh. 2011. The effect of different levels of dried tomato pomace in the diet on broiler small intestine histomorphometrical properties. Publication of Iranian Animal Science, 90: 61-71.
15. Giuntini, D., G. Graziani, B. Lercari, V. Fogliano, G.F. Soldatini and A. Ranieri. 2005. Changes in carotenoid and ascorbic acid contents in fruits of different tomato genotypes related to the depletion of UV-B radiation. Journal of Agriculture and Food Chemistry, 53: 3174-3181. [DOI:10.1021/jf0401726]
16. Hadley, C.W., E.C. Miller, S.J. Schwartz and S.K. Clinton. 2002. Tomatoes, lycopene, and prostate cancer: progress and promise, Experimental Biology and Medicine, 227: 869-880. [DOI:10.1177/153537020222701006]
17. Halliwell, B. and J.M.C. Gutteridge. 1988. Free radicals and antioxidant protection: Mechanism and significance in toxicology and disease. Human Toxicology, 7: 7-13. [DOI:10.1177/096032718800700102]
18. Heradez, F., J. Madrid, V. Garcia, J. Orengo and M.D. Megias. 2004. Influence of two plant extracts on broilers performance, digestibility and digestive organ size. Poultry Science, 83: 169-174. [DOI:10.1093/ps/83.2.169]
19. Hosseini Vashan, S.J., A. Golian, A. Yaghoubfar and M.R. Nasiri. 2012. Evaluation of the effects of tomato pomace, herbal oil sources and tallow on blood lipids, plasma enzyme activity and antioxidant system of heat stressed broiler chickens. Animal Sciences Journal Pajouhesh & Sazandegi, 98: 64-75 (In Persian).
20. Jassen, W.M.M.A. 1989. European table of energy values for poultry feedstuffs. 3rdedition. Beekbergen. Netherlands: Spelderholt center for poultry research and information service, 95-96.
21. Jouzi, H., N. Vali and J. Pourreza. 2015. The effects of tomato pulp powder supplementation on performance and some blood parameters in Japanese quail. ARPN Journal of Agricultural and Biological Science, 10: 103-107.
22. Karacabey, E. and G. Mazza.2010. Optimization of antioxidant activity of grape cane extracts using response surface methodology. Food Chemistry, 119: 343-348. [DOI:10.1016/j.foodchem.2009.06.029]
23. Kim, H.S. and K.B. Chin. 2016. Effects of drying temperature on antioxidant activities of tomato powder and storage stability of pork patties. Korean Journal Food Science, 36 :1-5. [DOI:10.5851/kosfa.2016.36.1.51]
24. Lee, K.W., W.D. Choon, C.W. Kang and B.K. An. 2016. Effect of lycopene on the copper-induced oxidation of low density lipoprotein in broiler chickens. Springer Plus, 5: 389-397. [DOI:10.1186/s40064-016-2035-6]
25. Lutz, M, J. Hernández and C. Henríquez. 2015. Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. Journal of Food, 13: 541-547.
26. Martinez-Valvercle, I., M.J. Periage, G. Provan and A. Chesson. 2002. Phenolic compounds, lycopene and antioxidant activities in commercial varieties of tomato (lycopersicon esculentum). Journal of the Science of Food and Agriculture, 82: 323-330. [DOI:10.1002/jsfa.1035]
27. Mansoori, B., M. Modirsanei and M.M. Kiaei. 2008. Influence of dried tomato pomace as an alternative to wheat bran in maize or wheat based diets, on the performance of laying hens and traits of produced eggs. Iranian Journal of Veterinary Research, 9: 341-346.
28. Moreira, E.A.M., R.L.M. Fagundes, D.W. Filho, D. Neves, F. Sell, F. Bellisle and E. Kupek. 2005. Effects of diet energy level and tomato powder consumption on antioxidant status in rats. Clinical Nutrition, 24: 1038-1046. [DOI:10.1016/j.clnu.2005.08.005]
29. National Research Council. 1994. Nutrient Requirements of Poultry. 9th ed. Natl. Acad. Sci. Washington, DC.
30. Ordone, A.A.L., J.D. Gomez and M.A. Vattuone. 2008. Antioxidant activities of Sechium edule swartz extracts. Food Chemistry, 97: 452-458. [DOI:10.1016/j.foodchem.2005.05.024]
31. Palozza, P., A. Catalano, R.E. Simone, M.C. Mele and A. Cittadini. 2012. Effect of lycopene and tomato products on cholesterol metabolism. Annals Nutrition and Metabolism, 61: 126-134. [DOI:10.1159/000342077]
32. Porrini, M. and P. Riso. 2000. Lymphocyte lycopene concentration and DNA protection from oxidative damage is increased in women after a short period of tomato consumption. Journal of Nutrition, 130: 189-192. [DOI:10.1093/jn/130.2.189]
33. Periago, M.J., J. Garcia-Alonso, K. Jacob, A.B. Olivares, M.J. Bernal, M.D. Iniesta, C. Martinez and G. Ros. 2009. Bioactive compounds, folates and antioxidant properties of tomatoes (Lycopersicum esculentum) during vine ripening. International Journal of Food Science and Nutrition, 60: 694-708. [DOI:10.3109/09637480701833457]
34. Raffo, A., C. Leonardi, V. Fogliano, P. Ambrosino, M. Salucci, L. Gennaro, R. Bugianesi, F. Giuffrida and G. Quaglia. 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. Journal of Agriculture and Food Chemistry, 50: 6550-6556. [DOI:10.1021/jf020315t]
35. Rao, A.V. and S. Agarwal. 1999. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutrition Research, 19: 305-323. [DOI:10.1016/S0271-5317(98)00193-6]
36. Rao, A.V. and H. Shen. 2002. Effect of low dose lycopene intake or lycopene bioavailability and oxidative stress. Nutrition Research, 22: 1125-1131. [DOI:10.1016/S0271-5317(02)00430-X]
37. Sahin, N., C. Orhan, M. Tuzcu, K. Sahin and O. Kucuk. 2008. The effects of tomato powder supplementation on performance and lipid peroxidation in quail. Journal of Poultry Science, 87: 276-283. [DOI:10.3382/ps.2007-00207]
38. Sahin, K., C. Orhan, M. Tuzcu, N. Sahin, A. Hayirli, S. Bilgili and O. Kucuk. 2016. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers. Journal of Poultry Science, 95: 1088-1095. [DOI:10.3382/ps/pew012]
39. Sahin, K., M. Onderci, N. Sahin, M.F. Gursu and O. Kucuk. 2006a. Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. Journal of Thermal Biology, 31: 307-312. [DOI:10.1016/j.jtherbio.2005.12.006]
40. Saleh, H., A. Golian, H. Kermanshahi, M.T. Mirakzehi and M.J. Agah. 2015. Effects of natural antioxidant on the immune response, antioxidant enzymes and hematological broilers chickens. Scientific Research Iranian Veterinary Journal, 11: 67-79.
41. Sánchez-Moreno, C., J.A. Larrauri and F. Saura-Calixto.1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of Science and Food Agriculture, 76: 270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.3.CO;2-0 [DOI:10.1002/(SICI)1097-0010(199802)76:23.3.CO;2-0]
42. Shahzad, T., I. Ahmad, S. Choudhry, M.K. Saeed and M.N. Khan. 2014. DPPH free radical scavenging activity of tomato, cherry tomato and watermelon: lycopene extraction, purification and quantification. International Journal of Pharmacy and Pharmaceutical Sciences, 2: 223-228.
43. Stacewicz-Sapuntzakis, M. and P. Bowen. 2005. Role of lycopene and tomato products in prostate health. Biochimica et Biophysica Acta, 1740: 202-205. [DOI:10.1016/j.bbadis.2005.02.004]
44. Wang, L., X.L. Piao, S.W. Kim, X.S. Piao, Y.B. Shen and H.S. Lee. 2008. Effects of Forsythia suspense extract on growth performance, nutrient digestibility, and antioxidant activities in broiler chickens under high ambient temperature. Journal of Poultry Science, 87: 1287-1294. [DOI:10.3382/ps.2008-00023]
45. Vasko, V., I. Kosieradzk and E. Sawosz. 2006. The effect of tomato consumption on selected protein and lipid metabolism parameters as well as on the oxidative and functional status of rat livers. Journal of Animal and Feed Sciences, 15: 93-96. [DOI:10.22358/jafs/70151/2006]
46. Zhang, G.F., Z.B. Yang, Y. Wang, W.R. Yang, S.Z. Jiang and G.S. Gai. 2009. Effects of ginger root (zingiberofficinale) processed to different particle sizes on growth performance, antioxidant status and serum metabolites of broiler chickens. Journal of Poultry Science, 88: 2159-266. [DOI:10.3382/ps.2009-00165]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb