1. Ajafar, M. H., Kadhim, A. H., & AL-Thuwaini, T. M. (2022). The reproductive traits of sheep and their influencing factors. Reviews in Agricultural Science, 10, 82-89. [
DOI:10.7831/ras.10.0_82]
2. Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050. Agricultural Development Economics Division, 12(3),1-147.
3. Alkass, J. E., Hermiz, H. N., & Baper, M. I. (2021). Some aspects of reproductive efficiency in awassi ewes: A review. Iraqi Journal of Agricultural Sciences, 52(1), 20-27. [
DOI:10.36103/ijas.v52i1.1232]
4. Anderson, G. M., Hardy, S. L., Valent, M., Billings, H. J., Connors, J. M., & Goodman, R. L. (2003). Evidence that thyroid hormones act in the ventromedial preoptic area and the premammillary region of the brain to allow the termination of the breeding season in the ewe. Endocrinology, 144(7), 2892-2901. [
DOI:10.1210/en.2003-0322]
5. Asadollahpour Nanaei, H., Kharrati-Koopaee, H., & Esmailizadeh, A. (2022). Genetic diversity and signatures of selection for heat tolerance and immune response in Iranian native chickens. BMC Genomics, 23(1), 224. [
DOI:10.1186/s12864-022-08434-7]
6. Barendse, W., Harrison, B. E., Bunch, R. J., Thomas, M. B., & Turner, L. B. (2009). Genome wide signatures of positive selection: the comparison of independent samples and the identification of regions associated to traits. BMC Genomics, 10(1), 1-15. [
DOI:10.1186/1471-2164-10-178]
7. Biabani, P., Mehrbani Yeganeh, H., & Mokhber, M. (2022). Detection of genetic differences between Holstein and Iranian north-west indigenous hybrid cattles using genomic data. Research On Animal Production, 13(37), 175-186. [In Persian] [
DOI:10.52547/rap.13.37.175]
8. Böttner, M., Christoffel, J., Jarry, H., & Wuttke, W. (2006). Effects of long-term treatment with resveratrol and subcutaneous and oral estradiol administration on pituitary function in rats. Journal of Endocrinology, 189(1), 77-88. [
DOI:10.1677/joe.1.06535]
9. Colli, L., Milanesi, M., Vajana, E., Iamartino, D., Bomba, L., Puglisi, F., Nicolazzi, E., El-Din Ahmed, S., Herrera, J., & Cruz, L. (2016). Water buffalo genomic diversity and post-domestication migration routes. In International Plant and Animal Genome XXIV. USA.
10. Daza, D. O., & Larhammar, D. (2018). Evolution of the receptors for growth hormone, prolactin, erythropoietin and thrombopoietin in relation to the vertebrate tetraploidizations. General and Comparative Endocrinology, 257, 143-160. [
DOI:10.1016/j.ygcen.2017.06.021]
11. Dolatabady, M. M., & Habibizad, J. (2019). Single nucleotide polymorphisms (SNPs) of GDF9 gene in Bahmaei and Lak Ghashghaei sheep breeds and its association with litter size. Iranian Journal of Applied Animal Science, 9(3), 427-432
12. Esmaeili-Fard, S. M., Gholizadeh, M., Hafezian, S. H., & Abdollahi-Arpanahi, R. (2021). Genes and pathways affecting sheep productivity traits: Genetic parameters, genome-wide association mapping, and pathway enrichment analysis. Frontiers in Genetics, 12, 710613. [
DOI:10.3389/fgene.2021.710613]
13. Feng, X., Li, F., Wang, F., Zhang, G., Pang, J., Ren, C., Zhang, T., Yang, H., Wang, Z., & Zhang, Y. (2018). Genome-wide differential expression profiling of mRNAs and lncRNAs associated with prolificacy in Hu sheep. Bioscience reports, 38(2), BSR20171350. [
DOI:10.1042/BSR20171350]
14. Ghasemi, M., Hashemi, A., Mokhber, M., & Salehi, R. (2020). Association of exon 4 region of Gpr54 gene polymorphisms with litter size trait in Iranian Sanjabi and Ghezel sheep breeds by PCR-SSCP. Research On Animal Production, 11(29), 116-123. [In Persian] [
DOI:10.52547/rap.11.29.116]
15. Gholizadeh, M., & Esmaeili-Fard, S. M. (2022). Meta-analysis of genome-wide association studies for litter size in sheep. Theriogenology, 180, 103-112. [
DOI:10.1016/j.theriogenology.2021.12.025]
16. Gholizadeh, M., Rahimi-Mianji, G., Nejati-Javaremi, A., De Koning, D. J., & Jonas, E. (2014). Genomewide association study to detect QTL for twinning rate in Baluchi sheep. Journal of genetics, 93, 489-493. [
DOI:10.1007/s12041-014-0372-1]
17. Grainger, S., & Willert, K. (2018). Mechanisms of Wnt signaling and control. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 10(5), e1422. [
DOI:10.1002/wsbm.1422]
18. Habara, O., Logan, C. Y., Kanai-Azuma, M., Nusse, R., & Takase, H. M. (2021). WNT signaling in pre-granulosa cells is required for ovarian folliculogenesis and female fertility. Development, 148(9), dev198846. [
DOI:10.1242/dev.198846]
19. Ivanova, T., Stoikova-Grigorova, R., Ignatova, M., Dimitrova, I., & Koutev, V. (2021). Phenotypic and genetic characteristics of fecundity in sheep. A review. Bulgarian Journal of Agricultural Science, 27(5), 1002-1008.
20. Jiang, Y., Xie, M., Chen, W., Talbot, R., Maddox, J. F., Faraut, T., Wu, C., Muzny, D. M., Li, Y., & Zhang, W. (2014). The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 344(6188), 1168-1173. [
DOI:10.1126/science.1252806]
21. Khaltabadi Farahani, A. H., Mohammadi, H., & Moradi, H. (2020). Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds. Animal Production, 22(3), 325-335.
22. Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., & Gietzen, K. (2012). Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10(2), e1001258. [
DOI:10.1371/journal.pbio.1001258]
23. Kinsella, R. J., Kähäri, A., Haider, S., Zamora, J., Proctor, G., Spudich, G., Almeida-King, J., Staines, D., Derwent, P., & Kerhornou, A. (2011). Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database, 2011, bar030. [
DOI:10.1093/database/bar030]
24. Li, M., Song, Y., Rawal, S., Hinkle, S. N., Zhu, Y., Tekola-Ayele, F., Ferrara, A., Tsai, M. Y., & Zhang, C. (2020). Plasma prolactin and progesterone levels and the risk of gestational diabetes: a prospective and longitudinal study in a multiracial cohort. Frontiers in Endocrinology, 11, 83. [
DOI:10.3389/fendo.2020.00083]
25. Mohammadan Mosammam, R., Farahavar, A., Yavari, M., & Aliarabi, H. (2023). The effect of injection of GnRH dissolved in aluminum hydroxide gel nanoparticles or propyleneglycol on estrus synchronization, ovulation induction and fertility outcome after artificial insemination in Mehraban ewes. Research On Animal Production, 14(41), 1-12. )In Persian( [
DOI:10.61186/rap.14.41.1]
26. Mokhber, M., Moradi-Shahrbabak, M., Sadeghi, M., Moradi-Shahrbabak, H., Stella, A., Nicolzzi, E., Rahmaninia, J., & Williams, J. L. (2018). A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics, 19(1), 1-9. [
DOI:10.1186/s12864-018-4759-x]
27. Mokhber, M., Shahrbabak, M. M., Sadeghi, M., Shahrbabak, H. M., & Williams, J. (2015). Genome-wide survey of signature of positive selection in Khuzestani and Mazandrani buffalo breeds. Iranian Journal of Animal Science, 46(2), 119-131. )In Persian(
28. Moosanezhad Khabisi, M., Esmailizadeh, A., & Asadi Fozi, M. (2022). Evaluation of genomic inbreeding rate in Iranian native sheep using dense SNP markers (600K). Research On Animal Production, 13(35), 158-167. (In Persian) [
DOI:10.52547/rap.13.35.158]
29. Moradi, M. H., Nejati-Javaremi, A., Moradi-Shahrbabak, M., Dodds, K. G., & McEwan, J. C. (2012). Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13(1), 1-15. [
DOI:10.1186/1471-2156-13-10]
30. Moradi Shahrebabak, H., Biabani, P., Mehrbani Yeganeh, H., & Mokhber, M. (2023). Investigating the genetic diversity of Iranian native and Holstein cattle breeds using genomic data. Animal Sciences Journal, 36(138), 87-98. )In Persian(
31. Nicolazzi, E. L., Caprera, A., Nazzicari, N., Cozzi, P., Strozzi, F., Lawley, C., Pirani, A., Soans, C., Brew, F., & Jorjani, H. (2015). SNPchiMp v. 3: integrating and standardizing single nucleotide polymorphism data for livestock species. BMC Genomics, 16(1), 1-6. [
DOI:10.1186/s12864-015-1497-1]
32. Niu, Z.-g., Qin, J., Jiang, Y., Ding, X.-D., Ding, Y.-g., Tang, S., & Shi, H.-c. (2021). The identification of mutation in BMP15 gene associated with litter size in Xinjiang Cele black sheep. Animals, 11(3), 668. [
DOI:10.3390/ani11030668]
33. Notter, D. (2012). Genetic improvement of reproductive efficiency of sheep and goats. Animal Reproduction Science, 130(3-4), 147-151. [
DOI:10.1016/j.anireprosci.2012.01.008]
34. Paz, E., Quiñones, J., Bravo, S., Montaldo, H., & Sepúlveda, N. (2015). Genotyping of BMPR1B, BMP15 and GDF9 genes in Chilean sheep breeds and association with prolificacy. Animal Genetics, 46(1), 98-99. [
DOI:10.1111/age.12254]
35. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller, J., Sklar, P., De Bakker, P. I., & Daly, M. J. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. [
DOI:10.1086/519795]
36. Qanbari, S., Strom, T. M., Haberer, G., Weigend, S., Gheyas, A. A., Turner, F., Burt, D. W., Preisinger, R., Gianola, D., & Simianer, H. (2012). A high resolution genome-wide scan for significant selective sweeps: an application to pooled sequence data in laying chickens. PloS One, 7(11), e49525. [
DOI:10.1371/journal.pone.0049525]
37. Sadeghi, M., Mokhber, M., & Shahrbabak, M. (2022). Genetic variation in hypothalamic-pituitary axis candidate genes and their effects on milk production traits in Iranian Holstein cattle. Russian Journal of Genetics, 58(11), 1393-1400. [
DOI:10.1134/S1022795422110096]
38. Schang, G., Ongaro, L., Schultz, H., Wang, Y., Zhou, X., Brûlé, E., Boehm, U., Lee, S.-J., & Bernard, D. J. (2020). Murine FSH production depends on the activin type II receptors ACVR2A and ACVR2B. Endocrinology, 161(7), bqaa056. [
DOI:10.1210/endocr/bqaa056]
39. Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research, 50(W1), W216-W221. [
DOI:10.1093/nar/gkac194]
40. Shi, S., Shao, D., Yang, L., Liang, Q., Han, W., Xue, Q., Qu, L., Leng, L., Li, Y., & Zhao, X. (2023). Whole genome analyses reveal novel genes associated with chicken adaptation to tropical and frigid environments. Journal of Advanced Research, 47, 13-25. [
DOI:10.1016/j.jare.2022.07.005]
41. Simianer, H., Ma, Y., & Qanbari, S. (2014). Statistical problems in livestock population genomics. In Proceedings of the 10th World Congress on Genetics Applied to Livestock Production, 17-22.
42. Smołucha, G., Gurgul, A., Jasielczuk, I., Kawęcka, A., & Miksza-Cybulska, A. (2021). A genome-wide association study for prolificacy in three Polish sheep breeds. Journal of Applied Genetics, 62, 323-326. [
DOI:10.1007/s13353-021-00615-6]
43. Strillacci, M. G., Moradi-Shahrbabak, H., Davoudi, P., Ghoreishifar, S. M., Mokhber, M., Masroure, A. J., & Bagnato, A. (2021). A genome-wide scan of copy number variants in three Iranian indigenous river buffaloes. BMC Genomics, 22(1), 1-14. [
DOI:10.1186/s12864-021-07604-3]
44. Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., & Pyysalo, S. (2023). The STRING database in 2023: protein-protein associationnetworks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), D638-D646. [
DOI:10.1093/nar/gkac1000]
45. Teo, Y. Y., Fry, A. E., Clark, T. G., Tai, E., & Seielstad, M. (2007). On the usage of HWE for identifying genotyping errors. Annals of Human genetics, 71(5), 701-703. [
DOI:10.1111/j.1469-1809.2007.00356.x]
46. Wang, Z.-H., Zhu, Q.-H., Li, X., Zhu, J.-W., Tian, D.-M., Zhang, S.-S., Kang, H.-L., Li, C.-P., Dong, L.-L., & Zhao, W.-M. (2021). iSheep: an integrated resource for sheep genome, variant and phenotype. Frontiers in Genetics, 12, 714852. [
DOI:10.3389/fgene.2021.714852]
47. Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 1358-1370. [
DOI:10.2307/2408641]
48. Xia, Q., Li, Q., Gan, S., Guo, X., Zhang, X., Zhang, J., & Chu, M. (2020). Exploring the roles of fecundity-related long non-coding RNAs and mRNAs in the adrenal glands of small-tailed Han Sheep. BMC Genetics, 21(1), 1-11. [
DOI:10.1186/s12863-020-00850-6]
49. Yoshino, O., McMahon, H. E., Sharma, S., & Shimasaki, S. (2006). A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proceedings of the National Academy of Sciences, 103(28), 10678-10683. [
DOI:10.1073/pnas.0600507103]
50. Zandi, M. B., Salek Ardestani, S., Vahedi, S. M., Mahboudi, H., Mahboudi, F., & Meskoob, A. (2022). Detection of Common Copy Number of Variants Underlying Selection Pressure in Middle Eastern Horse Breeds Using Whole-Genome Sequence Data. Journal of Heredity, 113(4), 421-430. [
DOI:10.1093/jhered/esac027]