1. Adetunji, M. O., Lamont, S. J., Abasht, B., & Schmidt, C. J. (2019). Variant analysis pipeline for accurate detection of genomic variants from transcriptome sequencing data. PloS one, 14(9), e0216838. [
DOI:10.1371/journal.pone.0216838]
2. Almansaf, D. (2022). Identification of Genomic, Proteomic, and Metabolomic Signatures Associated with Pulmonary Hypertension Syndrome in Broilers (Doctoral dissertation, University of Arkansas).
3. Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online. Retrieved May, 17, 2018.
4. Azizian, M., Rahimi, S., Kamali, M. A., Karimi, T. M., & Zobdeh, M. R. (2013). Comparison of the susceptibility of six male broiler hybrids to ascites by using hematological and pathological parameters. Journal of Agricultural Science and Technology, 15(3), 517-525.
5. Cheng, S., Liu, X., Liu, P., Li, G., Guo, X., Hu, G., Li, L., Wu, C., Xu, Z., & Zhou, Q. (2021). Dysregulated expression of mRNA and SNP in pulmonary artery remodeling in ascites syndrome in broilers. Poultry science, 100(3), 100877. [
DOI:10.1016/j.psj.2020.11.054]
6. Collins, D. W., & Jukes, T. H. (1994). Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics, 20(3), 386-396. [
DOI:10.1006/geno.1994.1192]
7. De Greef, K., Janss, L., Vereijken, A., Pit, R., & Gerritsen, C. (2001). Disease-induced variability of genetic correlations: Ascites in broilers as a case study. Journal of Animal Science, 79(7), 1723-1733. [
DOI:10.2527/2001.7971723x]
8. Dey, S., Parveen, A., Tarrant, K. J., Licknack, T., Kong, B. C., Anthony, N. B., & Rhoads, D. D. (2018). Whole genome resequencing identifies the CPQ gene as a determinant of ascites syndrome in broilers. PloS one, 13(1), e0189544. [
DOI:10.1371/journal.pone.0189544]
9. Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15-21. [
DOI:10.1093/bioinformatics/bts635]
10. Dominguez-Avila, N., Ruiz-Castañeda, G., González-Ramírez, J., Fernandez-Jaramillo, N., Escoto, J., Sánchez-Muñoz, F., Marquez-Velasco, R., Bojalil, R., Espinosa-Cervantes, R., & Sánchez, F. (2013). Over, and underexpression of endothelin 1 and TGF-beta family ligands and receptors in lung tissue of broilers with pulmonary hypertension. BioMed Research International, 2013. [
DOI:10.1155/2013/190382]
11. Druyan, S., & Cahaner, A. (2007). Segregation among test-cross progeny suggests that two complementary dominant genes explain the difference between ascites-resistant and ascites-susceptible broiler lines. Poultry Science, 86(11), 2295-2300. [
DOI:10.3382/ps.2007-00018]
12. Enayat, K., Farhadi, A., & Rahimi Mianji, Gh (2021). Detection of Lack of Function Mutation of p.Q879X Affecting Abortion in APAF1 Gene in Holstein Cattle. Res Anim Prod, 12, 146-156. [In Persian] [
DOI:10.52547/rap.12.31.146]
13. Faraji, M., Karimi Dehkordi, S., Zamiani Moghadam, A. K., Ahmadipour, B., & Khajali, F. (2019). Combined effects of guanidinoacetic acid, coenzyme Q10 and taurine on growth performance, gene expression and ascites mortality in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 103(1), 162-169. [
DOI:10.1111/jpn.13020]
14. Fathi, M., & Haydari, M. (2016). Effects of lemon balm (Melissa officinalis) essential oil on performance, mortality and some blood parameters related to ascites in broiler chickens. Animal Production Research, 5(1).
15. Guo, F., Liu, P., Guo, X., Li, G., Cheng, S., Zou, Z., Hou, X., Latigo, V., Li, L., & Hu, G. (2021). Bioinformatics Analysis of JAZF1 Gene in Broilers with Ascites Syndrome. Pakistan Veterinary Journal, 41(1), 19-24. [
DOI:10.29261/pakvetj/2020.072]
16. Hasanpur, K., Nassiri, M., Hosseini Salekdeh, G., Vaez Torshizi, R., Pakdel, A., Kermanshahi, H., & Naghous, M. (2016). The suitability of some blood gas and biochemical parameters as diagnostic tools or early indicators of ascites syndrome in broiler sire lines. Journal of Animal Physiology and Animal Nutrition, 100(3), 456-463. [
DOI:10.1111/jpn.12395]
17. Hasanzadeh, M. (2010). Endogenous and environmental factors interactions that contribute to the development of ascites in broiler chickens: a review. Iranian Journal of Veterinary Medicine, 4(2), 117-126. doi: 10.22059/ijvm.2010.21365 [In Persian]
18. Hassanpour, H., Momtaz, H., Shahgholian, L., Bagheri, R., Sarfaraz, S., & Heydaripoor, B. (2011). Gene expression of endothelin-1 and its receptors in the heart of broiler chickens with T3-induced pulmonary hypertension. Research in Veterinary Science, 91(3), 370-375. [
DOI:10.1016/j.rvsc.2010.09.019]
19. Henrissat, B., & Davies, G. (1997). Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology, 7(5), 637-644. [
DOI:10.1016/S0959-440X(97)80072-3]
20. Hoseini, Z. S., Farhadi, A., Gholizadeh, M., & Rahimi-Mianji, Gh. (2020). Detection of Lack of Function Mutation of P. R12X in SLC37A2 Locus in Montbeliarde and Holstein Cattle. Research on Animal Production, 11(29), 135-142. [In Persian] [
DOI:10.52547/rap.11.29.135]
21. Hossain, M. E., & Akter, N. (2022). Further insights into the prevention of pulmonary hypertension syndrome (ascites) in broiler: a 65-year review. World's Poultry Science Journal, 78(3), 641-688. [
DOI:10.1080/00439339.2022.2090305]
22. Hyatt, R. E., & Smith, J. R. (1954). The mechanism of ascites: a physiologic appraisal. The American journal of medicine, 16(3), 434-448. [
DOI:10.1016/0002-9343(54)90359-9]
23. Imiya, K., Ishizaki, T., Seiki, T., Saito, F., Inazawa, J., Oka, S., & Kawasaki, T. (2002). cDNA cloning, genomic structure and chromosomal mapping of the mouse glucuronyltransferase-S involved in the biosynthesis of the HNK-1 carbohydrate epitope. Gene, 296(1-2), 29-36. [
DOI:10.1016/S0378-1119(02)00840-5]
24. Jehl, F., Degalez, F., Bernard, M., Lecerf, F., Lagoutte, L., Désert, C., Coulée, M., Bouchez, O., Leroux, S., & Abasht, B. (2021). RNA-Seq data for reliable SNP detection and genotype calling: interest for coding variant characterization and cis-regulation analysis by allele-specific expression in livestock species. Frontiers in Genetics, 12, 655707. [
DOI:10.3389/fgene.2021.655707]
25. Julian, R. J., McMillan, I., & Quinton, M. (1989). The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat‐type chickens. Avian Pathology, 18(4), 675-684. [
DOI:10.1080/03079458908418641]
26. Kalmar, I. D., Vanrompay, D., & Janssens, G. P. (2013). Broiler ascites syndrome: Collateral damage from efficient feed to meat conversion. The Veterinary Journal, 197(2), 169-174. [
DOI:10.1016/j.tvjl.2013.03.011]
27. Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S. E. (2023). Introduction of a Newcastle disease virus challenge strain (sub-genotype VII. 1.1) isolated in Iran. Veterinary Research Forum, 14(4), 221-228.
28. Lahav, T., Atzmon, G., Blum, S., Ben‐Ari, G., Weigend, S., Cahaner, A., Lavi, U., & Hillel, J. (2006). Marker‐assisted selection based on a multi‐trait economic index in chicken: experimental results and simulation. Animal Genetics, 37(5), 482-488. [
DOI:10.1111/j.1365-2052.2006.01512.x]
29. Lee, K. P., Anthony, N. B., Orlowski, S. K., & Rhoads, D. D. (2022). SNP-based breeding for broiler resistance to ascites and evaluation of correlated production traits. Hereditas, 159(1), 1-15. [
DOI:10.1186/s41065-022-00228-x]
30. Liu, P., Yang, F., Zhuang, Y., Xiao, Q., Cao, H., Zhang, C., Wang, T., Lin, H., Guo, X., & Hu, G. (2017). Dysregulated expression of microRNAs and mRNAs in pulmonary artery remodeling in ascites syndrome in broiler chickens. Oncotarget, 8(2), 1993-2007. [
DOI:10.18632/oncotarget.12888]
31. Lubritz, D., Smith, J., & McPherson, B. (1995). Heritability of ascites and the ratio of right to total ventricle weight in broiler breeder male lines. Poultry Science, 74(7), 1237-1241. [
DOI:10.3382/ps.0741237]
32. Luger, D., Shinder, D., Rzepakovsky, V., Rusal, M., & Yahav, S. (2001). Association between weight gain, blood parameters, and thyroid hormones and the development of ascites syndrome in broiler chickens. Poultry Science, 80(7), 965-971. [
DOI:10.1093/ps/80.7.965]
33. Malekshahdehi, S., Hafezian, S.H., Rahimi Mianji, Gh., Hasanpour, k. (2017). Differential gene expression analysis and identification of genes related to ascites syndrome in broiler chickens under cold stress condition. Ph.D. Thesis. [In Persian]
34. McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., & Daly, M. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297-1303. [
DOI:10.1101/gr.107524.110]
35. Metzker, M. L. (2010). Sequencing technologies-the next generation. Nature Reviews Genetics, 11(1), 31-46. [
DOI:10.1038/nrg2626]
36. Moghadam, H., McMillan, I., Chambers, J. R., & Julian, R. (2001). Estimation of genetic parameters for ascites syndrome in broiler chickens. Poultry Science, 80(7), 844-848. [
DOI:10.1093/ps/80.7.844]
37. Mohammadi Far, A., Faqih Imani, S. A., Mohammad Abadi, M. R., & Soflaei, M. (2014). The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agricultural Biotechnology Journal, 5(4), 125-136. [In Persian]
38. Mohammadifar, A., & Mohammadabadi, M. (2018). Melanocortin-3 receptor (mc3r) gene association with growth and egg production traits in Fars indigenous chicken. Malaysian Applied Biology, 47(3), 85-90.
39. Packialakshmi, B., Liyanage, R., Lay Jr, J. O., Makkar, S. K., & Rath, N. C. (2016). Proteomic changes in chicken plasma induced by Salmonella typhimurium lipopolysaccharides. Proteomics Insights, 7, PRI. S31609. [
DOI:10.4137/PRI.S31609]
40. Parveen, A., Jackson, C. D., Dey, S., Tarrant, K., Anthony, N., & Rhoads, D. D. (2020). Identification and validation of quantitative trait loci for ascites syndrome in broiler chickens using whole genome resequencing. BMC Genetics, 21, 1-10. [
DOI:10.1186/s12863-020-00859-x]
41. Pavlidis, H., Balog, J., Stamps, L., Hughes Jr, J., Huff, W., & Anthony, N. (2007). Divergent selection for ascites incidence in chickens. Poultry Science, 86(12), 2517-2529. [
DOI:10.3382/ps.2007-00134]
42. Pisano, C., Vlodavsky, I., Ilan, N., & Zunino, F. (2014). The potential of heparanase as a therapeutic target in cancer. Biochemical Pharmacology, 89(1), 12-19. [
DOI:10.1016/j.bcp.2014.02.010]
43. Shafiei, H., Bakhtiarizadeh, M. R., & Salehi, A. (2018). Large-scale RNA editing profiling in different adult chicken tissues. BioRxiv, 319871. [
DOI:10.1101/319871]
44. Shahdadnejad, N., Mohammadabadi, M., & Shamsadini, M. (2016). Typing of clostridium perfringens isolated from broiler chickens using multiplex PCR. Genetics in the 3rd Millennium, 14(4), 4368-4374.
45. Shi, S., Shen, Y., Zhao, Z., Hou, Z., Yang, Y., Zhou, H., Zou, J., & Guo, Y. (2014). Integrative analysis of transcriptomic and metabolomic profiling of ascites syndrome in broiler chickens induced by low temperature. Molecular BioSystems, 10(11), 2984-2993. [
DOI:10.1039/C4MB00360H]
46. Stoyloff, J. Petri Net Representation and Analysis of Mannose Type O-Glycan Biosynthesis. Acta Morphologica et Anthropologica, 25, 1-2.
47. V Kumar, A., K Katakam, S., Urbanowitz, A.-K., & Gotte, M. (2015). Heparan sulphate as a regulator of leukocyte recruitment in inflammation. Current Protein and Peptide Science, 16(1), 77-86. [
DOI:10.2174/1573402111666150213165054]
48. Vlodavsky, I., Gross-Cohen, M., Weissmann, M., Ilan, N., & Sanderson, R. D. (2018). Opposing functions of heparanase-1 and heparanase-2 in cancer progression. Trends in Biochemical Sciences, 43(1), 18-31. [
DOI:10.1016/j.tibs.2017.10.007]
49. Wideman, R., Rhoads, D., Erf, G., & Anthony, N. (2013). Pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Poultry Science, 92(1), 64-83. [
DOI:10.3382/ps.2012-02745]
50. Williams, G. J., & Thorson, J. S. (2009). Natural product glycosyltransferases: properties and applications. Advances in Enzymology & Related Areas of Molecular Biology, 76, 55. [
DOI:10.1002/9780470392881.ch2]