دوره 13، شماره 37 - ( پاییز 1401 1401 )                   جلد 13 شماره 37 صفحات 186-175 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Biabani P, Mehrbani Yeganeh H, Moradi shahr babak H, Mokhber M. Detection of Genetic Differences between Holstein and Iranian North-West Indigenous Hybrid Cattles using Genomic Data. rap 2022; 13 (37) :175-186
URL: http://rap.sanru.ac.ir/article-1-1294-fa.html
بیابانی پریسا، مهربانی یگانه حسن، مرادی شهربابک حسین، مخبر مهدی. شناسایی تفاوت‌های ژنتیکی بین گاوهای نژاد هلشتاین و آمیخته های بومی شمال غرب ایران با استفاده از اطلاعات ژنومی. پژوهشهاي توليدات دامي 1401; 13 (37) :186-175

URL: http://rap.sanru.ac.ir/article-1-1294-fa.html


عضو هیأت علمی گروه علوم دامی، دانشکدگان کشاورزی و منابع طبیعی ، دانشگاه تهران
چکیده:   (409 مشاهده)
چکیده مبسوط
مقدمه و هدف: انتخاب برای افزایش فراوانی جهش­ های جدید که فقط در بعضی زیر جمعیت‌ها مفید هستند، باعث باقی ماندن نشانه ­هایی در سطح ژنوم می­شود. اغلب این مناطق با ژن ­ها و QTL­های کنترل کننده صفات مهم اقتصادی در ارتباط هستند.
مواد و روش­ ها: به‌منظور شناسایی تفاوت­ های ژنتیکی بین گاوهای شیری هلشتاین و آمیخته­ های بومی شمال غرب ایران، از اطلاعات ژنومی 60 رأس گاو هلشتاین و ۱۰۰ رأس گاو آمیخته بومی شمال غرب ایران استفاده شد. بعد از اطمینان از ساختار مجزای جمعیت ­های مورد مطالعه، آماره ­های FST، XP-EHH و Rsb جهت شناسایی نشانه­ های انتخاب استفاده شد.
یافته­ ها: به ترتیب تعداد 21، 16 و 24 منطقه‌ی ژنومی که حدود آستانهای آماره‌ها­ی مربوطه را گذرانده بودند، با آماره­ های FST، XP-EHH و Rsb به‌عنوان نشانه­ های انتخاب، تعیین شدند. مناطق ژنومی انتخاب ‌شده با مناطق ژنومی متناظر آن روی ژنوم گاو (ARS-UCD1.2 Bos Taurus Genome)، هم‌ردیف سازی و در نهایت تعداد 104 و 134 ژن به ترتیب از روش FST و روش ­های مبتنی بر LD، شناسایی شدند.
نتیجه ­گیری: برخی از ژن­ های شناسایی ‌شده در مسیرهای متابولیکی مرتبط با چشایی، بویایی، مسیرهای متابولیکی سنتز چربی‌ها، مقاومت در برابر عوامل بیماری‌زا و نیز عملکرد تولید مثلی نقش دارند. همچنین برخی از ژن‌های شناسایی ‌شده از طریق مسیر سیگنالینگ WNT  (Wingless-type) با تولید شیر در ارتباط هستند. مناطق ژنومی تحت انتخاب جهت آنالیزهای بیشتر و یافتن شبکه‌های ژنی مورد بررسی بیشتر قرار گرفتند. این آنالیزها توسط نرم‌افزار آنلاین و مرتبط با پایگاه داده‌های ژنومی (DAVID) انجام گرفت. یک مورد شبکه ژنی معنی‌دار (9-10× 5/4 p<) شناسایی شد. این شبکه ژنی با گیرنده‌های چشایی و بیشتر برای تشخیص مزه‌های تلخ ارتباط داشتند. شناسایی جایگاه‌های تحت انتخاب، علاوه بر درک بهتر چگونگی عمل انتخاب طبیعی و مصنوعی روی نژاد هلشتاین و آمیخته‌های شمال غرب ایران، می‌تواند به شناسایی QTL‌ها و نواحی مرتبط با صفات اقتصادی مهم کمک کند. به‌طور کلی، جهت شناسایی نقش دقیق این ژن‌ها و QTLها باید مطالعات پیوستگی و عملکردی بیشتری انجام گیرد.




 
متن کامل [PDF 1584 kb]   (110 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک و اصلاح نژاد دام
دریافت: 1401/1/24 | ویرایش نهایی: 1401/8/28 | پذیرش: 1401/5/25 | انتشار: 1401/8/28

فهرست منابع
1. Adoligbe, C.M., L. Zan and S. Farougou. 2016. Functional analysis and association studies of bovine MYOT gene with meat quality. Journal of Animal Science, 94: 59-60.‌ [DOI:10.2527/jas2016.94supplement459b]
2. Akey, J.M. 2009. Constructing genomic maps of positive selection in humans: where do we go from here? Genome Research, 19(5): 711-722. [DOI:10.1101/gr.086652.108]
3. Alexander, C.M., S. Goel, S.A. Fakhraldeen and S. Kim. 2012. Wnt signaling in mammary glands: plastic cell fates and combinatorial signaling. Cold Spring Harbor Perspectives in Biology, 4(10): 8037-8042. [DOI:10.1101/cshperspect.a008037]
4. Alexander, D.H. and K. Lange. 2011. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics, 12(246): 1-6. [DOI:10.1186/1471-2105-12-246]
5. Alexander, D.H., J. Novembre and K. Lange. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19(9): 1655-1664. [DOI:10.1101/gr.094052.109]
6. Almeida, O.A.C., G.C.M. Moreira, F.M. Rezende, C. Boschiero, P.J. de Oliveira and A.M.G. Ibelli. 2019. Identification of selection signatures involved in performance traits in a paternal broiler line. BMC Genomics, 20(449): 1-20. [DOI:10.1186/s12864-019-5811-1]
7. Álvarez, I., I. Fernández, A. Traoré, L. Pérez-Pardal, N.A. Menéndez-Arias and F. Goyache. 2020. Genomic scan of selective sweeps in Djallonké (West African Dwarf) sheep shed light on adaptation to harsh environments. Nature, 10(2824): 1-13. [DOI:10.1038/s41598-020-59839-x]
8. Animalgenome: National animal genome research program. http://www.animalgenome.org/cgi-bin/QTLdb/BT/browse/.
9. Bahbahani, H., H.H. Musa, D. Wragg, E.S. Shuiep, F. Almathen and O. Hanotte. 2019. Genome diversity and signatures of selection for production and performance traits in dromedary camels. Frontiers in Genetics, 10(893):1-14. [DOI:10.3389/fgene.2019.00893]
10. Bertolini, F., B. Servin, A. Talenti, E. Rochat, E.S. Kim, C. Oget and P. Crepaldi. 2018. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genetics Selection Evolution, 50(1): 1-24.‌ [DOI:10.1186/s12711-018-0421-y]
11. Brito, L.F., J.W. Kijas, R.V. Ventura, M. Sargolzaei, L.R. Porto-Neto and A. Cánovas. 2017. Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genomics, 18(229): 1-19. [DOI:10.1186/s12864-017-3610-0]
12. Browning, S.R. and B.L. Browning. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. The American Journal of Human Genetics, 81(5): 1084-1097. [DOI:10.1086/521987]
13. Chen, N., Y. Cai, Q. Chen, R. Li, K. Wang, Y. Huang and C. Lei. 2018. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nature Communications, 9(1): 1-13.‌ [DOI:10.1038/s41467-018-04737-0]
14. DAVID: The Database for annotation, visualization and integrated discovery. https://david.ncifcrf.gov/.
15. Dorfman, R., C. Taylor, F. Lin, L. Sun, A. Sandford, P. Paré and Members of the Canadian Consortium for CF Genetic Studies. 2011. Modulatory effect of the SLC9A3 gene on susceptibility to infections and pulmonary function in children with cystic fibrosis. Pediatric pulmonology, 46(4): 385-392. [DOI:10.1002/ppul.21372]
16. Edea, Z., H. Dadi, T. Dessie and K.S. Kim. 2019. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes and Genomics, 41: 973-981. [DOI:10.1007/s13258-019-00820-y]
17. Ensembl BioMart: Ensembl online genome data base BioMart Tool. http:// www.ensembl.org/biomart/martview/.
18. EntrezGene: NCBI Resources EntrezGene. http://www.ncbi.nlm.nih.gov/.
19. Falconer, D.S. and T.F.C. Mackay. 1996. Introduction to quantitative genetics. 4rd edn., Longman, Essex, 478 pp.
20. Fariello, M.I. B. Servin, G. Tosser-Klopp, R. Rupp, C. Moreno, M. San Cristobal and International Sheep Genomics Consortium. 2014. Selection signatures in worldwide sheep populations. PLoS One, 9(8): 103813. [DOI:10.1371/journal.pone.0103813]
21. Ferreira, A.M., S.S. Araújo, E. Sales-Baptista and A.M. Almeida. 2013. Identification of novel genes for bitter taste receptors in sheep (Ovis aries). Animal, 7(4): 547-554.‌ [DOI:10.1017/S1751731112002030]
22. Garcia-Bailo, B., C. Toguri, K.M. Eny and A. El-Sohemy. 2009. Genetic variation in taste and its influence on food selection. OMICS, 13: 69-80 [DOI:10.1089/omi.2008.0031]
23. Gautier, M. and R. Vitalis. 2012. rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics, 28(8): 1176-1177. [DOI:10.1093/bioinformatics/bts115]
24. Gautier, M., D. Laloë and K. Moazami-Goudarzi. 2010. Insights into the genetic history of French cattle from dense SNP Data on 47 worldwide breeds. PLOS ONE, 5(9): 13038. [DOI:10.1371/journal.pone.0013038]
25. GeneCards: The Human Gene Database. http://www.genecards.org.
26. Gregory, T.R. 2009. Artificial selection and domestication: modern lessons from Darwin's enduring analogy. Evolution: Education and Outreach, 2: 5-27. [DOI:10.1007/s12052-008-0114-z]
27. Grilz-Seger, G., M. Neuditschko, A. Ricard, B. Velie, G. Lindgren and M. Mesarič. 2019. Genome-wide homozygosity patterns and evidence for selection in a set of European and near eastern horse breeds. Genes (Basel), 10: 491. [DOI:10.3390/genes10070491]
28. Groenen, M.A., A.L. Archibald, H. Uenishi, C.K. Tuggle, Y. Takeuchi, M.F. Rothschild and L.B. Schook. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 491(7424): 393-398. [DOI:10.1038/nature11622]
29. Hariharan, P. and J. Dupuis. 2021. Mapping gene and gene pathways associated with coronary artery disease: a CARDIoGRAM exome and multi-ancestry UK biobank analysis. Scientific Reports, 11(1): 1-15.‌ [DOI:10.1038/s41598-021-95637-9]
30. Honda, K. and A.J. Griffith. 2021. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Human Genetics, 1-10.‌ [DOI:10.1007/s00439-021-02311-1]
31. Hu, Z.L., C.A. Park and J.M. Reecy. 2022. Bringing the animal QTLdb and CorrDB into the future: meeting new challenges and providing updated services. Nucleic acids research, 50(D1): 956-961. [DOI:10.1093/nar/gkab1116]
32. Igoshin, A.V., N.S. Yudin, N.M. Belonogova and D.M. Larkin. 2019. Genome-wide association study for body weight in cattle populations from Siberia. Animal Genetics, 50: 250-265. [DOI:10.1111/age.12786]
33. Jemaa, S.B., M. Boussaha, M.B. Mehdi, J.H. Lee and S.H. Lee. 2015. Genome-wide insights into population structure and genetic history of Tunisian local cattle using the illumina bovinesnp50 beadchip. BMC Genomics, 16(1): 1-13. [DOI:10.1186/s12864-015-1638-6]
34. Jombart, T. 2008. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24: 1403-1405. [DOI:10.1093/bioinformatics/btn129]
35. Karimi, K., E.M. Strucken, N. Moghaddar, M.H. Ferdosi, A. Esmailizadeh and C. Gondro. 2016. Local and global patterns of admixture and population structure in Iranian native cattle. BMC genetics, 17(1): 1-14. [DOI:10.1186/s12863-016-0416-z]
36. Kasarda, R., N. Moravčíková, B. Olšanská, G. Mészáros, L. Vostrý, H. Vostrá-Vydrová and J. Candrák. 2021. The evaluation of genomic diversity and selection signals in the autochthonous Slovak Spotted cattle. Czech Journal of Animal Science, 66(7): 251-261.‌ [DOI:10.17221/265/2020-CJAS]
37. Kijas, J.W., J.S. Ortiz, R. McCulloch, A. James, B. Brice, B. Swain and International Goat Genome Consortium. 2013. Genetic diversity and investigation of polledness in divergent goat populations using 52088 SNPs. Animal Genetics, 44(3): 325-335. [DOI:10.1111/age.12011]
38. Koolen, L.A. 2021. Effects of serotonin 1A receptor transmission on neural control of respiration (Doctoral dissertation, University of Bristol).
39. Kukuckova, V., N. Moravcikova, M. Simcic, M. Ferencakovié, G. Mészaros, J. Solkner, A. Trakovicka, O. Kadleeik, I. Curik and R. Kasarda. 2017. Genomic characterization of Pinzgau cattle: genetic conservation and breeding perspectives. Conservation Genetics, 18: 893-910. [DOI:10.1007/s10592-017-0935-9]
40. Lamason, R.L., M. Mohideen, J.R. Mest, A.C. Wong and H.L. Norton. 2005. SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science, 310: 1782-1786. [DOI:10.1126/science.1116238]
41. Li, C., D.S. Sun, S. Zhang, X. Wang, Q. Wu, L. Zhang, Y. Li and L. Qiao. 2014. Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS One, 9(5): e96186. [DOI:10.1371/journal.pone.0096186]
42. Maiorano, A.M., D.L. Lourenco, S. Tsuruta, A.M.T. Ospina, N.B. Stafuzza and Y. Masuda. 2018. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS One, 13: 0200694. [DOI:10.1371/journal.pone.0200694]
43. Mastrangelo, S., S.B. Jemaa, E. Ciani, G. Sottile, A. Moscarelli and M. Boussaha. 2020. Genome-wide detection of signatures of selection in three Valdostana cattle populations. Journal of Animal Breeding and Genetics, 137: 609-621. [DOI:10.1111/jbg.12476]
44. Medugorac, I., A. Medugorac, I. Russ, C.E. Veit-Kensch, P. Taberlet and B. Luntz. 2009. Genetic diversity of European cattle breeds highlights the conservation value of traditional unselected breeds with high effective population size. Molecular Ecology, 18: 3394-3410. [DOI:10.1111/j.1365-294X.2009.04286.x]
45. Mokhber, M. 2017. Genome-wide association study for milk production in Iranian buffalo. In 1st International and 5th National Conference on Organic vs. Conventional Agriculture, Ardabil, Iran.‌ 16-17th August 2017 (In Persian).
46. Mokhber, M., M. Moradi-Shahrbabak, M. Sadeghi, H. Moradi-Shahrbabak, A. Stella, E. Nicolzzi and J.L. Williams. 2018. A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics, 19(1): 1-9. [DOI:10.1186/s12864-018-4759-x]
47. Mokhber, M., M. Moradi-Shahrbabak, M. Sadeghi, H. Moradi-Shahrbabak and J. Williams. 2015. Genome-wide survey of signature of positive selection in Khuzestani and Mazandrani buffalo breeds. Iranian Journal of Animal Science, 46(2) (In Persian).
48. Moradi, M.H., A. Nejati-Javaremi, M. Moradi-Shahrbabak, K.G. Dodds and J.C. McEwan. 2012. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genetics, 13:10. [DOI:10.1186/1471-2156-13-10]
49. Muñoz, M., R. Bozzi and J. Garcia-casco. 2019. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Scientific Reports, 9: 13546. [DOI:10.1038/s41598-019-49830-6]
50. Nolte, W., G. Thaller and C. Kuehn. 2019 Selection signatures in four German warmblood horse breeds: tracing breeding history in the modern sport horse. PLoS One, 14: 1-25. [DOI:10.1371/journal.pone.0215913]
51. Ogorevc, J., T. Kunej, A. Razpet and P. Dovc. 2009. Database of cattle candidate genes and genetic markers for milk production and mastitis. Animal Genetics, 40: 832-851. [DOI:10.1111/j.1365-2052.2009.01921.x]
52. Pardridge, W.M. 2005. The blood-brain barrier: bottleneck in brain drug development. Neurotherapeutics: journal of the American Society for Experimental Neurotherapeutics (ASENT), 2(1): 3-14. [DOI:10.1602/neurorx.2.1.3]
53. Price, A.L., N.J. Patterson, R.M. Plenge, M.E. Weinblatt, N.A. Shadick and D. Reich. 2006. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8): 904-909. [DOI:10.1038/ng1847]
54. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M.A.R. Ferreira, D. Bender, J. Maller, P. Sklar, P.I.W. de-Bakker, M.J. Daly and P.C. Sham. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81: 559-575. [DOI:10.1086/519795]
55. Qanbari, S. and H. Simianer. 2014. Invited review: mapping signatures of positive selection in the genome of livestock. Livestock Science, 166: 133-143. [DOI:10.1016/j.livsci.2014.05.003]
56. Qanbari, S., E.C. Pimentel, J. Tetens, G. Thaller, P. Lichtner, A.R. Sharifi and H. Simianer. 2010. A genome-wide scan for signatures of recent selection in Holstein cattle. Animal Genetics, 41(4): 377-389 [DOI:10.1111/j.1365-2052.2009.02016.x]
57. Qanbari, S., H. Pausch, S. Jansen, M. Somel, T.M. Strom, R. Fries and H. Simianer. 2014. Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genetics, 10(2): e1004148. [DOI:10.1371/journal.pgen.1004148]
58. Qanbari, S., T.M. Strom, G. Haberer, S. Weigend and A.A. Gheyas. 2012. A high resolution genome-wide scan for significant selective sweeps: An application to pooled sequence data in laying chickens. PLoS One, 7(11): e49525. [DOI:10.1371/journal.pone.0049525]
59. Revilla, M., M. Ballester, A. Puig-Oliveras, A. Castelló, A.I. Fernández and J.M. Folch. 2016. P3018 Gene expression analysis in backfat and identification of eQTL regions for fatness and fatty acid composition candidate genes in pigs. Journal of Animal Science, 94(4): 60-61.‌ [DOI:10.2527/jas2016.94supplement460x]
60. Sabeti, P.C., S.F. Schaffner, B. Fry, J. Lohmueller, P. Varilly, O. Shamovsky, A. Palma, T.S. Mikkelsen, D. Altshuler and E.S. Lande. 2006. Positive natural selection in the human lineage. Science, 3129: 1614-1620. [DOI:10.1126/science.1124309]
61. Shi, P. and J. Zhang. 2006. Contrasting modes of evolution between vertebrate sweet/umami receptor genes and bitter receptor genes. Molecular Biology and Evolution, 23: 292-300. [DOI:10.1093/molbev/msj028]
62. Signer-Hasler, H., A. Burren, M. Neuditschko, M. Frischknecht, D. Garrick and C. Stricker. 2017. Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genetics Selection Evolution, 49: 1-13. [DOI:10.1186/s12711-017-0358-6]
63. Simianer, H., Y. Ma and S. Qanbari. 2014. Statistical problems in livestock population genomics. Proccedings, 10th Congress of Genetics Applied to Livestock Production, 17-22 August, Vancouver, BC, Canada.
64. Stella, A., P. Ajmone-Marsan, B. Lazzari and P. Boettcher. 2010. Identification of selection signatures in cattle breeds selected for dairy production. Genetics, 185: 1451-1461. [DOI:10.1534/genetics.110.116111]
65. Sugimoto, M., T. Watanabe and Y. Sugimoto. 2012. The molecular effects of a polymorphism in the 5′ UTR of solute carrier family 44, member 5 that is associated with birth weight in Holsteins. PLoS One, 7(7): e41267 [DOI:10.1371/journal.pone.0041267]
66. Sun, T., G. Huang, Z. Wang and S. Teng. 2020. Selection signatures of Fuzhong Buffalo based on whole-genome sequences. BMC genomics, 21: 674. [DOI:10.1186/s12864-020-07095-8]
67. The R Project for Statistical Computing: Free software environment for statistical computing and graphics. http:// www.r-project.org/.
68. Tsukada, K., S.Y. Nishio, M. Hattori and S.I. Usami. 2015. Ethnic-specific spectrum of GJB2 and SLC26A4 mutations: their origin and a literature review. Annals of Otology, Rhinology & Laryngology, 124(1): 61-76.‌ [DOI:10.1177/0003489415575060]
69. Turner, S.D. 2014. QQman: An R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv, 5165. [DOI:10.1101/005165]
70. UniProtKB. http://www.uniprot.org/.
71. Voight, B.F., S. Kudaravalli, X. Wen and J.K. Pritchard. 2006. A Map of recent positive selection in the human genome. PLoS Biology, 4(3): e72. [DOI:10.1371/journal.pbio.0040072]
72. Walugembe, M., F. Bertolini, C.M.B. Dematawewa, M.P. Reis, A.R. Elbeltagy and C.J. Schmidt. 2019. Detection of selection signatures among brazilian, sri lankan, and egyptian chicken populations under different environmental conditions. Frontiers in Genetics, 9:737. [DOI:10.3389/fgene.2018.00737]
73. Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution, 38: 1358-1370. [DOI:10.1111/j.1558-5646.1984.tb05657.x]
74. Weldenegodguad, M., R. Popov, K. Pokharel, I. Ammosov, Y. Ming, Z. Ivanova and J. Kantanen. 2019. Whole-genome sequencing of three native cattle breeds originating from the northernmost cattle farming regions. Frontiers in Genetics, 9: 728. [DOI:10.3389/fgene.2018.00728]
75. WIDDE: a Web-Interfaced next generation Database dedicated to genetic Diversity Exploration. http://widde.toulouse.inra.fr/widde/.
76. Zhang, W., M. Yang and M. Zhou. 2020. Identification of Signatures of Selection by Whole-Genome Resequencing of a Chinese Native Pig. Frontiers in Genetics, 11: 566255. [DOI:10.3389/fgene.2020.566255]
77. Zhao, S., P. Zheng, S. Dong, X. Zhan, Q.I. Wu, X. Guo and F. Wei. 2013. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics, 45(1): 67-71.‌ [DOI:10.1038/ng.2494]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2023 CC BY-NC 4.0 | Research On Animal Production(Scientific and Research)

Designed & Developed by : Yektaweb