دوره 7، شماره 13 - ( بهار و تابستان 1395 )                   جلد 7 شماره 13 صفحات 185-178 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Tuning and Application of Random Forest Algorithm in Genomic Evaluation. rap. 2016; 7 (13) :185-178
URL: http://rap.sanru.ac.ir/article-1-645-fa.html
غفوری کسبی فرهاد، رحیمی میانجی قدرت، هنرور محمود، نجاتی جوارمی اردشیر. تنظیم و کاربرد الگوریتم جنگل تصادفی در ارزیابی ژنومی . پژوهشهاي توليدات دامي. 1395; 7 (13) :185-178

URL: http://rap.sanru.ac.ir/article-1-645-fa.html


دانشجوی دکتری
چکیده:   (1490 مشاهده)

یکی از مباحث مهم در انتخاب ژنومی، استفاده از روشی مناسب برای برآورد اثر نشانگرها و ارزیابی ژنومی است. اخیراً روش­های یادگیری ماشین1 که جزو روش­های ناپارامتری غیرخطی هستند وارد ارزیابی ژنومی شده­اند. یکی از این روش­ها الگوریتم جنگل تصادفی2 است که این تحقیق روی نحوه تنظیم این روش متمرکز شده است. پارامترهای مهم در الگوریتم جنگل تصادفی به ترتیب اهمیت، تعداد متغیر انتخاب شده در هر گره درخت3، تعداد درخت4 و حداقل اندازه گره­های پایانی5 می­باشند که بهتر است برای آنها مقدار مناسبی تعیین شود و در اصطلاح مدل برای این پارامترها تنظیم6 شود. ژنومی 5 کروموزومی متشکل از 10000 نشانگر تک نوکلئوتیدی دوآللی7 هریک به طول یک مورگان شبیه­سازی شد و در ادامه، کارایی ترکیبات مختلف از تعداد متغیر انتخاب شده در هر گره درخت، تعداد درخت و حداقل اندازه گره­های پایانی در قالب جمعیت شبیه­سازی شده مورد آزمون قرار گرفته و بهترین ترکیب بر اساس پارامتر خطای خارج از کیسه8 انتخاب و برای تجزیه و تحلیل اطلاعات مورد استفاده قرار گرفت. برای داده­های شبیه­سازی شده در این مطالعه، کمترین مقدار خطای خارج از کیسه و هم­چنین حداکثر صحت پیش­بینی ارزش­های اصلاحی ژنومی مربوط به مدلی با تعداد متغیر انتخاب در هر گره درخت برابر 6000، تعداد درخت برابر 1000 و حداقل اندازه گره­های پایانی برابر 5 بود. بقیه ترکیبات از این سه پارامتر نه تنها منجر به افزایش صحت پیش­بینی نشدند بلکه در آن­هایی که از تعداد بیشتری درخت استفاده شده بود، مدت زمان لازم برای انجام محاسبات نیز افزایش یافت. با توجه به این­که صحت پیش­بینی الگوریتم جنگل تصادفی تابعی از تعداد متغیر انتخاب شده در هر گره درخت، تعداد درخت و حداقل اندازه گره­های پایانی است، لازم است ترکیبات مختلفی از این پارامترها مورد استفاده قرار گیرد و ترکیب بهینه با حداکثر عملکرد پیش­بینی انتخاب شده و برای ارزیابی ژنومی استفاده شود. 

متن کامل [PDF 418 kb]   (2210 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2018 All Rights Reserved | Research On Animal Production(Scientific and Research)

Designed & Developed by : Yektaweb