1. Abdel‐Warith, A. A., Russell, P. M., & Davies, S. J. (2001). Inclusion of a commercial poultry by‐product meal as a protein replacement of fish meal in practical diets for African catfish Clarias gariepinus (Burchell 1822). Aquaculture Research, 32, 296-305. [
DOI:10.1046/j.1355-557x.2001.00053.x]
2. Abdollahi, M. R., Ravindran, V., & Svihus, B. (2013). Pelleting of broiler diets: an overview with emphasis on pellet quality and nutritional value, Animal Feed Science and Technology, 179, 1-23. 10.1016/j.anifeedsci.2012.10.011 [
DOI:10.1016/j.anifeedsci.2012.10.011]
3. Abdollahi, M. R., Ravindran, V., Wester, T. J., Ravindran, G., & Thomas, D. V. (2010). Influence of conditioning temperature on the performance, nutrient utilisation and digestive tract development of broilers fed on maize- and wheat-based diets, British Poultry Science, 51, 648-657. https://doi.org/ 10.1080/00071668.2010.522557 [
DOI:10.1080/00071668.2010.522557]
4. Abd El-Ghany, W. A., & Babazadeh, D. (2022). Betaine: A Potential Nutritional Metabolite in the Poultry Industry. Animals (Basel), 30;12(19):2624. https://doi.org/ 10.3390/ani12192624 [
DOI:10.3390/ani12192624]
5. Aimiuwu, O. C., & Lilburn, M. S. (2006). Protein quality of poultry by-product meal manufactured from whole fowl co-extruded with corn or wheat. Poultry Science, 85(7), 1193-1199. https://doi.org/ 10.1093/ps/85.7.1193 [
DOI:10.1093/ps/85.7.1193]
6. Amirahmadi, E., Safamehr, A.R., Nobakht, A., & Mehmannavaz, Y. (2020). Adding wheat and rapeseed meal to corn-soy diets affects intestinal morphology and nutrient digestibility in broilers. South African Journal of Animal Science, 50 (No. 6). 800-806. https://doi.org/ 10.4314/sajas.v50i6.5 [
DOI:10.4314/sajas.v50i6.5]
7. Apajalahti, J., & Vienola, K. (2016). Interaction between chicken intestinal microbiota and protein digestion. Animal Feed Science and Technology, 221, 323-330. [
DOI:10.1016/j.anifeedsci.2016.05.004]
8. Awonorin, S., Ayoade, J., Bamiro, F., & Oyewole, L. (1995). Relationship of rendering process temperature and time to selected quality parameters of poultry by-product meal. LWT-Food Science and Technology, 28, 129-134. [
DOI:10.1016/S0023-6438(95)80024-7]
9. Beski, S. S., Swick, R. A., & Iji, P. A. (2015). Specialized protein products in broiler chicken nutrition: A review. Animal Nutrition, 1(2), 47-53. [
DOI:10.1016/j.aninu.2015.05.005]
10. Briggs, J. L., Maier, D. E., Watkins, B. A., & Behnke, K. C. (1999). Effect of ingredients and processing parameters on pellet quality. Poultry Science, 78, 1464-1471. [
DOI:10.1093/ps/78.10.1464]
11. Cao, M. H., & Adeola, O. (2016). Energy value of poultry byproduct meal and animal-vegetable oil blend for broiler chickens by the regression method. Poultry Science, 95(2), 268-275. [
DOI:10.3382/ps/pev317]
12. Choopani, H. R., Mojtahedi, M., Hosseini-Vashan, S. J., Ghiasi, S. E. (2023). Effect of Different Levels of Pellet Binder and Poultry By-product Meal on Performance, Carcass Quality and Serum Parameters of Broiler Chicken. Iranian Journal of Animal Science Reserche, 14(4), 549-563. [In Persian]
13. Dalólio, F. S., Silva, D. L., Albino, L. F. T., Nunes, R. V., Ribeiro Júnior, V., Rostagno, H. S., Ferreira Junior, H. C., & Pinheiro, S. R. F. (2019). Energy values and standardized ileal digestibility of amino acids in some feedstuffs for broilers. Semina: Ciências Agrárias, 40(6), 2651-2662. 2651, Semina: Ciências Agrárias, Londrina, 40(6), 2651-2662, nov./dez. 2019. doi: 10.5433/1679-0359.2019v40n6p265 [
DOI:10.5433/1679-0359.2019v40n6p2651]
14. De Oliveira, G. A., & Zanoelo, E. F. (2012). Thermophysical properties of hydrolyzed by-products from the meat industry. Journal of Food Process Engineering, 35, 930-939. [
DOI:10.1111/j.1745-4530.2011.00644.x]
15. Drew, M. D., Syed, N. A., Goldade, B. G., Laarveld, B., & Van Kessel, A. G. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry science, 83(3), 414-420. [
DOI:10.1093/ps/83.3.414]
16. El-Saadony, M. T., Yaqoob, M. U., Hassan, F. U., Alagawany, M., Arif, M., & Taha A. E. (2022). Applications of butyric acid in poultry production: the dynamics of gut health, performance, nutrient utilization, egg quality, and osteoporosis. Animal Health Research Reviews, 23, 136-146. [
DOI:10.1017/S1466252321000220]
17. Engberg, R. M., Hedemann, M. S., Steenfeldt, S., & Jensen, B. B. (2004). Influence of whole wheat and xylanase on broiler performance and microbial composition and activity in the digestive tract. Poultry Science, 83, 925-938. [
DOI:10.1093/ps/83.6.925]
18. Fahrenholz, A. C. (2012). Evaluating factors affecting pellet durability and energy consumption in a pilot feed mill and comparing methods for evaluating pellet durability. Doctoral thesis, Kansas State University. https://krex.k-state.edu/server/api/core/bitstreams/37f7cc29-0d70-4c5e-8689-e6d2d535b68c/content.
19. Francis, J. A., & Griffiths, R. D. (2002). Glutamine: essential for immune nutrition in the critically ill. British Journal of Nutrition, 87:3-8. [
DOI:10.1079/BJN2001451]
20. Ghiasvand, A. R., Khatibjoo, A., Mohammadi, Y., Akbari Gharaei, M., & Shirzadi, H. (2021). Effect of fennel essential oil on performance, serum biochemistry, immunity, ileum morphology and microbial population, and meat quality of broiler chickens fed corn or wheat-based diet. British Poultry Science, 62, 562-572. [
DOI:10.1080/00071668.2021.1883551]
21. Hertrampf, J. W., & Piedad-Pascual, F. (2000). "Poultry By-Product Meal." In Handbook on Ingredients for Aquaculture Feeds, pp. 330-337. Springer, Dordrecht. [
DOI:10.1007/978-94-011-4018-8_35]
22. Hesabi Nameghi, A. H., Edalatian, O., & Bakhshalinejad, R. (2022). A blend of thyme and rosemary powders with poultry by-product meal can be used as a natural antioxidant in broilers. Acta Scientiarum. Animal Sciences, 45.
https://doi.org/10.4025/actascianimsci.v44i1.57126 [
DOI:10.4025/actascianimsci.v45i1.57126]
23. Jones-Ibarra, A. M., Acuff, G. R., Alvarado, C. Z., &Taylor, T. M. (2017). Validation of thermal lethality against Salmonella enterica in poultry offal during rendering. Food Protection, 80, 1422-1428. [
DOI:10.4315/0362-028X.JFP-16-554]
24. Kirkpinar, F., Açikgöz, Z., Bozkurt, M., & Ayhan, V. (2004). Effects of inclusion of poultry by-product meal and enzyme-prebiotic supplementation in grower diets on performance and feed digestibility of broilers. British Poultry Science, 45(2), 273-279. [
DOI:10.1080/00071660410001715885]
25. Kleyn, R. (2013). Chicken Nutrition: A guide for nutritionists and poultry professionals. Contextbooks. 374 p.
26. Laflamme, D., Izquierdo, O., Eirmann, L., & Binder, S. (2014). Myths and misperceptions about ingredients used in commercial pet foods. Veterinary Clinics of North America: Veterinary Clinics: Small Animal Practice, 44, 689-698. https://doi.org/ 10.1016/j.cvsm.2014.03.002 [
DOI:10.1016/j.cvsm.2014.03.002]
27. Lasekan, A., Abu Bakar, F., & Hashim, D. (2013). Potential of chicken by-products as sources of useful biological resources. Waste Manag, 33, 552-565. [
DOI:10.1016/j.wasman.2012.08.001]
28. Liu, L., Wang, Z., Wei, B., Wang, L., Zhang, Q., Si, X., Huang, Y., Zhang, H., & Chen, W. (2024). Replacement of Corn with Different Levels of Wheat Impacted the Growth Performance, Intestinal Development, and Cecal Microbiota of Broilers. Animals (Basel), 14(11), 1536. [
DOI:10.3390/ani14111536]
29. Loar, R. E., & Corzo, A. (2011). Effects of feed formulation on feed manufacturing and pellet quality characteristics of poultry diets. World's Poultry Science Journal, 67, 19-28. [
DOI:10.1017/S004393391100002X]
30. Lund, D., & Lorenz, K. J. (1984): Influence of time, temperature, moisture, ingredients, and processing conditions on starch gelatinization. C R C Critical Reviews in Food Science and Nutrition, 20(4), 249-273. [
DOI:10.1080/10408398409527391]
31. Ma, X., Li, Z., & Zhang, Y. (2022). Effects of the partial substitution of corn with wheat or barley on the growth performance, blood antioxidant capacity, intestinal health and fecal microbial composition of growing pigs. Antioxidants, 11, 1614.
https://doi.org/10.3390/antiox11081614 [
DOI:10.3390/antiox11081614.]
32. Maier, D. E., & Briggs, J. L. (2000). Making better. Feed and Grain, 1, 12-15.
33. Mahmood, T., Mirza, M. A., Nawaz, H., & Shahid, M. (2018). Exogenous protease supplementation of poultry by-product meal-based diets for broilers: Effects on growth, carcass characteristics and nutrient digestibility. Animal Physiology and Animal Nutrition, 102(1), e233-e241. [
DOI:10.1111/jpn.12734]
34. McCafferty, K. W., Bedford, M. R., Kerr, B. J., & Dozier, W. A. (2019). Effects of age and supplemental xylanase in corn- and wheat-based diets on cecal volatile fatty acid concentrations of broilers. Poultry Science, 98, 4787-4800. [
DOI:10.3382/ps/pez194]
35. McCoy, R. A., Behnke, K. C., Hancock, J. D., & McEllhiney, R. R. (1994). Effect of mixing uniformity on broiler chick performance. Poultry Science, 73, 443-451. [
DOI:10.3382/ps.0730443]
36. McNaughton, J. L., Pasha, H. A., Day, E. J., & Dilworth, B. C. (1997). Effect of pressure and temperature on poultry offal meal quality. Poultry Science, 56(1977), 1161-1167. [
DOI:10.3382/ps.0561161]
37. Mevliyaoğulları, E., Karslı, M. A., & Mert, B. (2023). Utilizing surplus bread as an ingredient in dog food: Evaluating baking and extrusion processing on physicochemical properties and in vitro digestibility performance. Journal of Cereal Science, 113, 103741. [
DOI:10.1016/j.jcs.2023.103741]
38. Mohammadi, G.A., Hossein, M., Hossein, M., Shivazad, M., Torshizi, M. A. K., & Kim, W. K. (2019a). Effect of different types and levels of fat addition and pellet binders on physical pellet quality of broiler feeds. Poultry Science, 98, 4745-4754. [
DOI:10.3382/ps/pez190]
39. Mohammadi, G.A., Hossein, M., Hossein, M., Shivazad, M., Torshizi, M. A. K., & Kim, W.K. (2019b). Effects of feed form and particle size, and pellet binder on performance, digestive tract parameters, intestinal morphology, and cecal microflora populations in broilers. Poultry Science, 98(3), 1432-1440. [
DOI:10.3382/ps/pey488]
40. Montagne, L., Pluske, J. R., & Hampson, D. J. (2003). A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108(1-4), 95-117. [
DOI:10.1016/S0377-8401(03)00163-9]
41. Moradi, A., Moradi, S., & Abdollahi, M. R. (2018). Influence of feed ingredients with pellet-binding properties on physical pellet quality, growth performance, carcass characteristics and nutrient retention in broiler chickens. Animal Production Science, 59(1), 73-81.
https://doi.org/10.1071/AN17109 [
DOI:10.1071/AN17109.]
42. Muramatsu, K., Massuquetto, A., Dahlke, F., & Maiorka, A. (2015). Factors that affect pellet quality: Agricultural Science and Technology, 9, 717-722. https://doi.org/ 10.17265/2161-6256/2015.09.002 [
DOI:10.17265/2161-6256/2015.09.002]
43. Murray, S. M., Patil, A. R., Fahey Jr., G. C., Merchen, N. R., & Hughes, D. M. (1997). Raw and rendered animal by-products as ingredients in dog diets. Animal Science, 75, 2497-2505. [
DOI:10.2527/1997.7592497x]
44. Naderinejad, S., Zaefarian, F., Abdollahi, M.R., Hassanabadi, A. Kermanshahi, H., & Ravindran, V. (2016). Influence of feed form and particle size on performance, nutrient utilisation, and gastrointestinal tract development and morphometry in broiler starters fed maize-based diets. Animal Feed Science and Technology, 215, 92-104. [
DOI:10.1016/j.anifeedsci.2016.02.012]
45. Navidshad, B., & Seifdavati, J. (2009). Effect of dietary levels of a modified meat meal on performance and small intestinal morphology of broiler chickens. African Journal of Biotechnology, 8(20). https://www.ajol.info/index.php/ajb/article/view/66017
46. Newsholme, P., Procopio, J., Lima, M. M. R., Pithon‐Curi, T. C., & Curi, R. (2003). Glutamine and glutamate-their central role in cell metabolism and function. Cell Biochemistry and Function, 21(1), 1-9. [
DOI:10.1002/cbf.1003]
47. Nguyen, H. T., Bedford, M. R., Wu, S. B., & Morgan, N. K. (2022). Dietary Soluble Non-Starch Polysaccharide Level Influences Performance, Nutrient Utilisation and Disappearance of Non-Starch Polysaccharides in Broiler Chickens. Animals (Basel), 22, 12(5), 547. [
DOI:10.3390/ani12050547]
48. Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive reviews in food science and food safety, 19(2), 311-331. [
DOI:10.1111/1541-4337.12526]
49. Pesti, G. (1987). The nutritional value of poultry by-product meal. Agricultural and Food Sciences, 176-181. https://www.cabidigitallibrary.org/doi/full/10.5555/19881404151
50. Pirgozliev, V., Mirza, M., & Rose, S. (2016). Does the effect of pelleting depend on the wheat sample when fed to chickens? Animal, 10(4), 571- 577. [
DOI:10.1017/S1751731115002311]
51. Qaisrani, S. N., Moquet, P. C. A., Van Krimpen, M. M., Kwakkel, R. P., Verstegen, M. W. A., & Hendriks, W. H. (2014). "Protein source and dietary structure influence growth performance, gut morphology, and hindgut fermentation characteristics in broilers." Poultry Science, 93(12), 3053-3064. [
DOI:10.3382/ps.2014-04091]
52. Rao, V. K., Johri, T., & Sandagopan, V. R. (1984). Effect of processing conditions on the nutritive value of meat meal. Indian Journal Poultry Science, 19, 132-136. https://www.cabidigitallibrary.org/doi/full/10.5555/19851465253
53. Ravindran, V. R., & Amerah, A. M. (2009). Wheat: composition and feeding value for poultry S. Davies, G. Evans (Eds.), Soybean and Wheat Crops: Growth, Fertilization and Yield, Nova Science Publishers, United States, 245-259.
54. Reid, C. A., & Hillman, K. (1991). The effects of retrogradation and amylose/amylopectin ratio of starches on carbohydrate fermentation and microbial populations in the porcine colon. Animal Science, 68(3), 503-510. [
DOI:10.1017/S1357729800050529]
55. Ribeiro, L. B., Bankuti, F. I., da Silva, M. U., Ribeiro, P. M., Silva, J. M., Sato, J., Bortolo, M., & Vasconcellos, R. S. (2019). Oxidative stability and nutritional quality of poultry by-product meal: An approach from the raw material to the finished product. Animal Feed Science and Technology, 255, 114226. [
DOI:10.1016/j.anifeedsci.2019.114226]
56. Rigby, T. R., Glover, B. G., Foltz, K. L., Boney, J. W., & Moritz, J. S. (2018). Effects of modifying diet and feed manufacture concern areas that are notorious for decreasing pellet quality. Applied Poultry Research, 27, 240-248. [
DOI:10.3382/japr/pfx064]
57. Sajjadi, S., Toghdory, A., Ghoorchi, T., & Mohammad, A. (2024). The Effect of Replacing Soybean Meal with Poultry Slaughter Residue Powder on Feed Intake and Rumen Parameters of Dalagh Dairy Ewes. Research on Animal Production, 15(1), 1-12. [In Persian] [
DOI:10.61186/rap.15.43.1]
58. Sahraei, M., Ghanbari, A., & Lootfollahian, H. (2012). Effects of Inclusion of poultry slaughter house by-product meals in diet on performance, serum uric acid and carcass traits of broilers. Global Veterinaria, 8(3), 270-275. https://www.cabidigitallibrary.org/doi/full/10.5555/20123118817
59. Schoeff, R. W. (1994). History of the Formula Feed Industry. In: R.R. McEllhiney, Ed. Feed Manufacturing Technology IV. American Feed Industry Association. Arlington, Virginia, 7.
60. Schneiders, J. L., de Avila, A. S., Broch, J., Frank, R., Schöne, R. A., Hofferber, T. R., & Nunes, R. V. (2021). Energetic values of animal by-products for broiler chickens of different ages. Research, Society and Development, 10(6), e37110615639-e37110615639. [
DOI:10.33448/rsd-v10i6.15639]
61. Silva, E. P. D., Rabello, C. B. V., Lima, M. B. D., Ludke, J. V., Arruda, E. M. F. D., & Albino, L. F. T. (2014). Poultry offal meal in broiler chicken feed. Scientia Agricola, 71, 188-194. [
DOI:10.1590/S0103-90162014000300003]
62. Shirazi, J., Ghoorchi, T., Abdolhakim Toghdory, A., & Seyed Almousavi, S. M. M. (2023). Investigating the Effect of Replacing Soybean Meal with Poultry Slaughterhouse Waste Mixed with Rice Bran and Urea on Performance, Blood and Rumen Parameters of Fattening Lambs. Research on Animal Production, 13(38), 110- 117. [In Persian] [
DOI:10.52547/rap.13.38.110]
63. Shirley R. B., & Parsons C. M. (2000). Effect of pressure processing on amino acid digestibility of meat and bone meal for poultry. Poultry Science, 79, 1175-118. [
DOI:10.1093/ps/79.12.1775]
64. Stevens, C. A. (1987). Starch gelatinisation and the influence of particle size, steam pressure and die speed on the pelleting process. Ph.D. Thesis, Kansas State University, Manhattan, KS.
65. Tako, E., Ferket, P. R., & Uni, Z. (2004). Effects of in ovo feeding of car- bohydrates and beta-hydroxy-beta-methylbutyrate on the development of chicken intestine. Poultry Science, 83, 2023-2028. [
DOI:10.1093/ps/83.12.2023]
66. Thomas, M., & Van der Poel A. F. B. (1996). Physical quality of pelleted animal feed 1. Criteria for pellet quality. Animal Feed Science and Technology, 61, 89-112. [
DOI:10.1016/0377-8401(96)00949-2]
67. Thomas, M., Rijm, W., & Van der Poel, A. F. B. (2001). Functionality of raw materials and feed composition. Pages 87-102 in Feed Manufacturing in the Mediterranean Region. Improving Safety: From Feed to Food. CIHEAM, Zaragoza, Spain. http://om.ciheam.org/om/pdf/c54/01600016.pdf
68. Volpato, J, A., Ribeiro, L. B., Torezan, B. G., da Silva, I. C., Ide Oliveira Martins, I. Francisco, J. C. P., Genova, J. L., de Oliveira, N. T. E., Carvalho, S. T., de Oliveira Carvalho, P. L., & Vasconcellos, R. S. (2022). Determinant production factors to the in vitro organic matter digestibility and protein oxidation of poultry by-product meal. Poultry Science, 102, 02:102481. [
DOI:10.1016/j.psj.2023.102481]
69. Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24, 115-119. [
DOI:10.1016/j.fm.2006.07.004]
70. Williams, R. B. (2005). Intercurrent Coccidiosis and Necrotic Enteritis of Chickens: Rational, Integrated Disease Management by Maintenance of Gut Integrity. Avian Pathology, 34(3), 159-180. [
DOI:10.1080/03079450500112195]
71. Wood, J. F. (1987). The functional properties of feed raw materials and their effect on the production and quality of feed pellets. Animal Feed Science and Technology, 18, 1-17. [
DOI:10.1016/0377-8401(87)90025-3]
72. Yamka, R. M., Jamikorn, U., True, A. D., & Harmon, D. L. (2003). Evaluation of low-ash poultry meal as a protein source in canine. foods. Animal Science, 81, 2279-2284. [
DOI:10.2527/2003.8192279x]
73. Zafar, H., & Saier, M. H. (2021). Gut bacteroides species in health and disease. Gut Microbes, 13, 1-20. [
DOI:10.1080/19490976.2020.1848158]
74. Zhang, M., Wang, Y., Zhao, X., Liu, C., Wang, B., & Zhou, J. (2021). Mechanistic basis and preliminary practice of butyric acid and butyrate sodium to mitigate gut inflammatory diseases: a comprehensive review. Nutrition Research, 95, 1-18. [
DOI:10.1016/j.nutres.2021.08.007]