دوره 16، شماره 3 - ( پاییز 1404 )                   جلد 16 شماره 3 صفحات 142-130 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Noori Noroozi H, Mohammadabadi T, Chaji M. (2025). Effects of Different Levels of Hydroalcoholic Extract of Mallow Additive in the Diet on Growth Performance, Digestibility, and Rumen and Blood Parameters in Male Lambs. Res Anim Prod. 16(3), 130-142. doi:10.61882/rap.2025.1499
URL: http://rap.sanru.ac.ir/article-1-1499-fa.html
نوری نوروزی حسین، محمدآبادی طاهره، چاجی مرتضی.(1404). اثر سطوح مختلف افزودنی عصاره هیدروالکلی پنیرک به جیره غذایی بر عملکرد رشد، قابلیت هضم و فراسنجه‌های شکمبه‌ای و خونی بره‌های نر پرواری پژوهشهاي توليدات دامي 16 (3) :142-130 10.61882/rap.2025.1499

URL: http://rap.sanru.ac.ir/article-1-1499-fa.html


1- گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ایران
چکیده:   (1256 مشاهده)
چکیده مبسوط
مقدمه و هدف: استفاده از گیاهان دارویی در تغذیه دام‌ها، به‌ویژه در جیره‌های پرواری، به‌عنوان یک استراتژی مؤثر برای بهبود عملکرد رشد و سلامت دام‌ها مورد توجه پژوهشگران قرار دارد. یکی از این گیاهان، پنیرک (Malva sylvestris) است که بهدلیل خواص دارویی و درمانی بی‌شمار خود می‌تواند تأثیرات مثبت فراوانی بر بهبود عملکرد شکمبه، هضم مواد مغذی، کاهش هزینه خوراک و افزایش کارایی تولید داشته باشد. این گیاه به‌طور وسیعی در استان‌های کشور، بهویژه خوزستان، بوشهر و هرمزگان در ایران می‌روید و بهعنوان یک منبع غنی از ترکیبات فعال زیستی شناخته می‌شود. با توجه به افزایش استفاده از گیاهان دارویی به‌عنوان جایگزین برای افزودنی‌های شیمیایی، هدف این تحقیق بررسی اثر افزودن عصاره هیدروالکلی پنیرک به جیره غذایی بره‌های نر پرواری بر عملکرد رشد، قابلیت هضم، و پارامترهای شکمبه‌ای و خونی بود.
مواد و روش‌ها: این تحقیق بر روی 30 رأس بره نر عربی با میانگین وزن 2±22 کیلوگرم و سن 5±100 روز در ایستگاه تحقیقاتی دامپروری دانشگاه علوم کشاورزی و منابع طبیعی خوزستان بهمدت 90 روز انجام شد. بره‌ها به‌طور تصادفی در سه تیمار و 10 تکرار تقسیم شدند. تیمارهای آزمایشی شامل تیمار شاهد (بدون عصاره پنیرک) و تیمارهایی با سطوح 0/2 و 0/4 درصد عصاره پنیرک بهعنوان درصدی از ماده خشک مصرفی روزانه بودند. جیره‌های آزمایشی بر اساس نرم‌افزار سیستم تغذیه نشخوارکنندگان کوچک تنظیم شدند و در دو نوبت صبح و عصر به بره‌ها داده می‌شد. در طول دوره آزمایش، وزن‌گیری هفتگی، اندازه‌گیری مصرف خوراک روزانه، و نمونه‌برداری از سرم خون و محتویات شکمبه جهت بررسی پارامترهای خونی و شکمبه‌ای انجام شد. عصاره پنیرک از گیاه خشک‌شده بهروش خیساندن در اتانول 70 درصد استخراج و به‌عنوان افزودنی به جیره‌های روزانه دام‌ها اضافه شد.
یافته‌ها: تیمار حاوی 0/2 درصد عصاره پنیرک موجب افزایش معنادار وزن پایان پروار (P = 0.019)، افزایش وزن روزانه(P = 0.008) ، و افزایش مصرف ماده خشک
 (P = 0.02) و خوراک روزانه (P = 0.06) در مقایسه با تیمارهای دیگر شد. در تیمار 0/4 درصد عصاره، اگرچه افزایش در وزن روزانه مشاهده شد، ولی مصرف خوراک به‌طور قابل توجهی کاهش یافت. همچنین، بیشترین قابلیت هضم ماده آلی (P = 0.009) و پروتئین خام در تیمار 0/2 درصد عصاره پنیرک مشاهده شد، که نشان‌دهنده تأثیر مثبت عصاره پنیرک در بهبود فرآیندهای گوارشی و جذب مواد مغذی است. پارامترهای خونی نشان دادند که سطح نیتروژن اوره‌ای خون در تیمار 0/4 درصد به‌طور معنی‌داری کاهش یافت (P=0.001)، که بهبود وضعیت تغذیه‌ای بره‌ها را نشان می‌دهد. کاهش نیتروژن اوره‌ای خون به‌طور مستقیم با بهبود استفاده از نیتروژن در بدن مرتبط است که می‌تواند به کاهش آلودگی محیطی و بهبود کارایی تغذیه‌ای کمک کند. در مورد پارامترهای تخمیر شکمبه‌ای، کاهش pH مایع شکمبه (P = 0.03) در تیمار حاوی 0/4 درصد عصاره پنیرک مشاهده شد، که می‌تواند به بهبود شرایط تخمیر شکمبه و تولید اسیدهای چرب فرار کمک کند. اگرچه، در میزان تولید اسیدهای چرب فرار تفاوت معناداری بین تیمارها مشاهده نشد (P=0.96). نتایج این تحقیق نشان میدهند که افزودن عصاره پنیرک به جیره غذایی بره‌ها، به‌ویژه در سطح 0/2، درصد تأثیر مثبتی بر بهبود عملکرد رشد  (P = 0.008)و قابلیت هضم مواد مغذی دارد. ترکیبات زیست‌فعال موجود در عصاره پنیرک، به‌ویژه اسیدهای فنلی و فلاونوئیدها، می‌توانند بر میکروبیوم شکمبه تأثیر بگذارند و تخمیر شکمبه‌ای را بهبود بخشند. همچنین، کاهش سطح نیتروژن اوره‌ای خون (P = 0.001) در اثر استفاده از عصاره پنیرک نشان‌دهنده بهبود استفاده از نیتروژن در فرآیندهای متابولیک بود که توانست به کاهش آلودگی محیطی کمک کند. این یافته‌ها با تحقیقات مشابه در زمینه استفاده از عصاره‌های گیاهی در جیره دام‌ها همخوانی دارند. کاهش pH شکمبه (P = 0.03) در تیمار حاوی 0/4 درصد عصاره پنیرک می‌تواند به بهبود شرایط تخمیر شکمبه و تولید اسیدهای چرب فرار کمک کند، که این اسیدها انرژی لازم برای رشد دام را تأمین می‌کنند. افزایش در تولید اسیدهای چرب فرار، به‌ویژه استات و بوتیرات، از جمله تغییراتی است که می‌تواند به بهبود سلامت شکمبه و فرآیندهای گوارشی دام‌ها منجر شود. این تغییرات همچنین ممکن است به بهبود متابولیسم انرژی و استفاده بهینه از خوراک منجر شوند. همچنین، در تیمار حاوی 0/2 درصد عصاره، بهبود در مصرف ماده خشک و خوراک روزانه (P = 0.02) مشاهده شد که نشان‌دهنده تأثیر مثبت عصاره پنیرک در افزایش رغبت دام‌ها به مصرف خوراک است. این افزایش ممکن است به‌دلیل تأثیرات مثبت عصاره بر فرآیندهای گوارشی و جذب مواد مغذی باشد که دام‌ها را به مصرف بیشتر خوراک ترغیب می‌کند.

نتیجه‌گیری: این تحقیق نشان میدهد که افزودن عصاره هیدروالکلی پنیرک به جیره غذایی بره‌های پرواری به‌ویژه در سطح 0/2 درصد موجب بهبود عملکرد رشد
(P = 0.008) ، افزایش قابلیت هضم مواد مغذی(P = 0.009) ، و بهبود وضعیت تخمیر شکمبه‌ای (P = 0.03) می‌شود. همچنین، این عصاره تأثیر مثبتی بر کاهش سطح نیتروژن اوره‌ای خون (P = 0.001) و بهبود ترکیب اسیدهای چرب فرار در شکمبه داشت. عصاره پنیرک به‌عنوان یک افزودنی طبیعی در جیره دام‌ها می‌تواند به‌عنوان یک راهکار مؤثر برای بهبود عملکرد رشد و سلامت عمومی دام‌ها به‌کار گرفته شود. با توجه به نتایج به‌دست‌آمده، استفاده از عصاره پنیرک به‌عنوان افزودنی طبیعی در جیره‌های غذایی دام‌ها می‌تواند به‌طور مؤثری موجب بهبود سلامت و عملکرد دام‌ها شود. پیشنهاد می‌شود که در آینده تحقیقات بیشتری در زمینه تأثیرات طولانی‌مدت و مکانیزم‌های دقیق اثر عصاره پنیرک روی دام‌ها انجام شود.

 
متن کامل [PDF 1333 kb]   (25 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه نشخوارکنندگان
دریافت: 1403/11/18 | پذیرش: 1404/3/1

فهرست منابع
1. Aboagye, I. A., Oba, M., Castillo, A. R., Koenig, K. M., Iwaasa, A. D., & Beauchemin, K. A. (2018). Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet1,2. Journal of Animal Science, 96(12), 5276-5286. doi:10.1093/jas/sky352 [DOI:10.1093/jas/sky352]
2. Al-Husseini, H. A., & Saeed, A. A. (2022). Effect of Feeding Pellets Containing Different Concentrate to Wheat Straw Ratios on the Blood Parameters of Awassi Lambs. Journal of University of Babylon for Pure and Applied Sciences, 201-210. [DOI:10.29196/jubpas.v30i3.4337]
3. Antunović, Z., Novoselec, J., Klir Šalavardić, Ž., Steiner, Z., Šperanda, M., Jakobek Barron, L., . . . Pavić, V. (2022). Influence of red corn rich in anthocyanins on productive traits, blood metabolic profile, and antioxidative status of fattening lambs. Animals, 12(5), 612. [DOI:10.3390/ani12050612]
4. Aschenbach, J., Penner, G., Stumpff, F., & Gäbel, G. (2011). Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 89(4), 1092-1107. [DOI:10.2527/jas.2010-3301]
5. Batiha, G. E.-S., Tene, S. T., Teibo, J. O., Shaheen, H. M., Oluwatoba, O. S., Teibo, T. K. A., . . . Papadakis, M. (2023). The phytochemical profiling, pharmacological activities, and safety of malva sylvestris: a review. Naunyn-Schmiedeberg's Archives of Pharmacology, 396(3), 421-440. [DOI:10.1007/s00210-022-02329-w]
6. Beigh, Y. A., Ganai, A. M., Muzamil, S., Mir, D., Ahmad, H. A., & Mir, S. H. (2019). Serum Lipid Profile in Sheep Fed Diet Incorporated with Feed Additives. Indian Journal of Veterinary Sciences and Biotechnology, 15(1), 31-35. [DOI:10.21887/ijvsbt.15.1.7]
7. Belkhodja, H., Bouhadi, D., Sedjrari, K., & Sehanine, S. (2024). Evaluation of the Anti-inflammatory and Anti-hemolytic Potential of Polyphenolic Components of Common Mallow (Malva sylvestris). Asian Journal of Dairy & Food Research, 43(2), 295-300. [DOI:10.18805/ajdfr.DRF-321]
8. Binuomote, R. T., Muftaudeen, N., & Adekunle, C. A. (2022). Rumen parameters of West African dwarf sheep fed Panicum maximum supplemented with varying levels of Gmelina arborea leaves. Journal of Animal Health, 3(2), 1-20. [DOI:10.47941/ahj.991]
9. Boadi, D., Benchaar, C., Chiquette, J., & Massé, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84(3), 319-335. [DOI:10.4141/A03-109]
10. Bones, U. A., Flach, K. A., da Rosa, G. M., & da Costa Junior, J. A. (2022). Comparative evaluation between empirical and scientific knowledge about the use of medicinal plants and their compounds. Revista de Gestão Social e Ambiental, 16(2), e02961-e02961. [DOI:10.24857/rgsa.v16n2-015]
11. Broderick, G., & Kang, J. (1980). Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 63(1), 64-75. [DOI:10.3168/jds.S0022-0302(80)82888-8]
12. Ceccanti, C., Landi, M., Guidi, L., Pardossi, A., & Incrocci, L. (2022). Seasonal Fluctuations of Crop Yield, Total Phenolic Content and Antioxidant Activity in Fresh or Cooked Borage (Borago officinalis L.), Mallow (Malva sylvestris L.) and Buck's-Horn Plantain (Plantago coronopus L.) Leaves. Horticulturae, 8(3), 253. [DOI:10.3390/horticulturae8030253]
13. Chen, W., Chen, B.-l., Yang, D.-l., Zhang, X., & Chen, Y. (2022). Effects of walnut green husk extract on ruminal fermentation of sheep with subacute ruminal acidosis. Chinese Journal of Animal Nutrition, 34(6), 3824-3834.
14. Conway, W. J. (1950). Micro diffusion analysis and volumetric error. Paper presented at the (2th ed) Crosby Lock Wood and Son., London, U.K.
15. Della Malva, A., Santillo, A., Priolo, A., Marino, R., Ciliberti, M. G., Sevi, A., & Albenzio, M. (2023). Effect of hazelnut skin by-product supplementation in lambs' diets: implications on plasma and muscle proteomes and first insights on the underlying mechanisms. Journal of Proteomics, 271, 104757. [DOI:10.1016/j.jprot.2022.104757]
16. Demirtaş, A. (2021). Evaluation of the stimulatory and inhibitory effects of Malva sylvestris leaf extract on some beneficial and pathogenic bacteria from the colon. Journal of Istanbul Veterinary Sciences, 5(1), 13-18. [DOI:10.30704/http-www-jivs-net.866891]
17. Demirtaş, A., Öztürk, H., & Pişkin, İ. (2018). Overview of plant extracts and plant secondary metabolites as alternatives to antibiotics for modification of ruminal fermentation. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(2), 213-217. [DOI:10.1501/Vetfak_0000002849]
18. Derix, J. (2017). The effect of high tannin concentrations in feed on protein digestion: grazers versus intermediate browsers. Ghent University: Ghent, Belgium.
19. Farghaly, M., & Abdullah, M. (2021). Effect of dietary oregano, rosemary and peppermint as feed additives on nutrients digestibility, rumen fermentation and performance of fattening sheep. Egyptian Journal of Nutrition and Feeds, 24(3), 365-376. [DOI:10.21608/ejnf.2021.210838]
20. Fathi, M., Ghane, M., & Pishkar, L. (2022). Phytochemical composition, antibacterial, and antibiofilm activity of Malva sylvestris against human pathogenic bacteria. Jundishapur Journal of Natural Pharmaceutical Products, 17(1), 114164. [DOI:10.5812/jjnpp.114164]
21. Gao, C., Qi, M., & Zhou, Y. (2024). Chestnut tannin extract modulates growth performance and fatty acid composition in finishing Tan lambs by regulating blood antioxidant capacity, rumen fermentation, and biohydrogenation. BMC Veterinary Research, 20(1), 23. [DOI:10.1186/s12917-023-03870-3]
22. Gunun, P., Wanapat, M., & Anantasook, N. (2013). Effects of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility in dairy steers. Asian-Australasian journal of Animal Sciences, 26(12), 1689. [DOI:10.5713/ajas.2013.13190]
23. Guyader, J., Eugène, M., Doreau, M., Morgavi, D., Gérard, C., & Martin, C. (2017). Tea saponin reduced methanogenesis in vitro but increased methane yield in lactating dairy cows. Journal of dairy science, 100(3), 1845-1855. [DOI:10.3168/jds.2016-11644]
24. Hamid, M. M. A., Moon, J., Yoo, D., Kim, H., Lee, Y. K., Song, J., & Seo, J. (2020). Rumen fermentation, methane production, and microbial composition following in vitro evaluation of red ginseng byproduct as a protein source. Journal of Animal Science and Technology, 62(6), 801. [DOI:10.5187/jast.2020.62.6.801]
25. Hassan, F.-u., Arshad, M. A., Ebeid, H. M., Rehman, M. S.-u., Khan, M. S., Shahid, S., & Yang, C. (2020). Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet-microbe interaction. Frontiers in Veterinary Science, 7, 575801. [DOI:10.3389/fvets.2020.575801]
26. He, Z., Cheng, L., Li, S., Liu, Q., Liang, X., Hu, J., . . . Zhao, F. (2022). Inulin and Chinese Gallotannin affect meat quality and lipid metabolism on Hu Sheep. Animals, 13(1), 160. [DOI:10.3390/ani13010160]
27. Huang, Y., Yan, Q., Jiang, M., Guo, S., Li, H., Lin, M., . . . Duan, J. (2022). Astragalus membranaceus additive improves serum biochemical parameters and reproductive performance in postpartum dairy cows. Frontiers in Veterinary Science, 9, 952137. [DOI:10.3389/fvets.2022.952137]
28. Hussain, L., Ikram, J., Rehman, K., Tariq, M., Ibrahim, M., & Akash, M. S. H. (2014). Hepatoprotective effects of Malva sylvestris L. against paracetamol-induced hepatotoxicity. Turkish Journal of Biology, 38(3), 396-402. [DOI:10.3906/biy-1312-32]
29. International, A. (2000). Official methods of analysis of AOAC International (Vol. 17): AOAC international.
30. Jayanegara, A., Goel, G., Makkar, H. P., & Becker, K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 209, 60-68. [DOI:10.1016/j.anifeedsci.2015.08.002]
31. Khamisabadi, H., Kafilzadeh, F., & Charaien, B. (2016). Effect of thyme (Thymus vulgaris) or peppermint (Mentha piperita) on performance, digestibility and blood metabolites of fattening Sanjabi lambs. Biharean Biologist, 10(2), 5.
32. Kim, W., Hanigan, M., Lee, S., Lee, S., Kim, D., Hyun, J., . . . & Lee, S. (2014). Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions. Journal of Dairy Science, 97(11), 7065-7075. [DOI:10.3168/jds.2014-8064]
33. Kolling, G., Stivanin, S., Gabbi, A., Machado, F., Ferreira, A., Campos, M., . . . & Pereira, L. (2018). Performance and methane emissions in dairy cows fed oregano and green tea extracts as feed additives. Journal of Dairy Science, 101(5), 4221-4234. [DOI:10.3168/jds.2017-13841]
34. Kour, D., Sharma, V. K., Sharma, R. K., Pathak, A. K., & Rastogi, A. (2023). Evaluation of native medicinal plants as feed additives in the Sheep ration. The Indian Journal of Animal Sciences, 93(11), 1091-1097. [DOI:10.56093/ijans.v93i11.129759]
35. Liu, C., Qu, Y.-h., Guo, P.-t., Xu, C.-c., Ma, Y., & Luo, H.-l. (2018). Effects of dietary supplementation with alfalfa (Medicago sativa L.) saponins on lamb growth performance, nutrient digestibility, and plasma parameters. Animal Feed Science and Technology, 236, 98-106. [DOI:10.1016/j.anifeedsci.2017.12.006]
36. Mazza, P., Jaeger, S., Silva, F., Barbosa, A., Nascimento, T., Hora, D., . . . Oliveira, R. (2020). Effect of dehydrated residue from acerola (Malpighia emarginata DC.) fruit pulp in lamb diet on intake, ingestive behavior, digestibility, ruminal parameters and N balance. Livestock Science, 233, 103938. [DOI:10.1016/j.livsci.2020.103938]
37. Mohammad Abadi, T., Hoseini, S. (2022). Effect of Malva sylverstris plant on milk quality and production, liver enzymes and nutrients digestibility of Khuzestani Buffalo. Journal of Ruminant Research,, 9(4), 109-120.
38. Mousavi, S. M., Hashemi, S. A., Behbudi, G., Mazraedoost, S., Omidifar, N., Gholami, A., . . . & Pynadathu Rumjit, N. (2021). A review on health benefits of Malva sylvestris L. nutritional compounds for metabolites, antioxidants, and anti‐inflammatory, anticancer, and antimicrobial applications. Evidence‐Based Complementary and Alternative Medicine, 2021(1), 5548404. [DOI:10.1155/2021/5548404]
39. Mravčáková, D., Sobczak-Filipiak, M., Váradyová, Z., Kucková, K., Čobanová, K., Maršík, P., . . . & Kaba, J. (2021). Effect of Artemisia absinthium and Malva sylvestris on antioxidant parameters and abomasal histopathology in lambs experimentally infected with Haemonchus contortus. Animals, 11(2), 462. [DOI:10.3390/ani11020462]
40. Osman, M. A., Motawe, H. F. A., Shoukry, M. M., El-Komy, E. M., Khattab, M. S., Radwan, A. S., & Hamouda, R. E.-S. (2024). The Influence of Mannan Oligosaccharides and Beta Glucan Supplementation on Growth Performance, Blood Constituents, and Cecal Parameters of Broiler Chickens. World's Veterinary Journal(1), 74-84. [DOI:10.54203/scil.2024.wvj10]
41. Ottenstein, D. M., & Bartley, D. A. . (1971). Separation of free acids C2 -C5 in dilute aqueous solution column technology. Journal of Chromatographic Science, 9(11), 673 -681. doi: [DOI:10.1093/chromsci/9.11.673]
42. Patra AK, S. J. (2009). Dietary phytochemicals as rumen modi fiers: a review of the effects on microbial populations. Antonie van Leeuwenhoek, 96, 363-375. doi: [DOI:10.1007/s10482-009-9364-1]
43. Prommachart, R., Uriyapongson, J., Cherdthong, A., & Uriyapongson, S. (2021). Feed intake, nutrient digestibility, antioxidant activity in plasma, and growth performance of male dairy cattle fed black rice and purple corn extracted residue. Tropical Animal Science Journal, 44(3), 307-315. [DOI:10.5398/tasj.2021.44.3.307]
44. Quadros, D. G., Kerth, C. R., Miller, R., Tolleson, D. R., Redden, R. R., & Xu, W. (2023). Intake, growth performance, carcass traits, and meat quality of feedlot lambs fed novel anthocyanin-rich corn cobs. Translational Animal Science, 7(1), txac171. [DOI:10.1093/tas/txac171]
45. Rabee, A. E., Younan, B. R., Kewan, K. Z., Sabra, E. A., & Lamara, M. (2022). Modulation of rumen bacterial community and feed utilization in camel and sheep using combined supplementation of live yeast and microalgae. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-16988-5 [DOI:10.1038/s41598-022-16988-5.]
46. Relling, A., Crompton, L., Loerch, S., & Reynolds, C. (2009). Plasma concentration of glucose-dependent insulinotropic polypeptide is negatively correlated with respiratory quotient in lactating dairy cows. Journal of Dairy Science, 92, 470-471.
47. Shadid, K. A., Shakya, A. K., Naik, R. R., Jaradat, N., Farah, H. S., Shalan, N., . . . & Oriquat, G. A. (2021). Phenolic content and antioxidant and antimicrobial activities of Malva sylvestris L., Malva oxyloba Boiss., Malva parviflora L., and Malva aegyptia L. leaves extract. Journal of Chemistry, 2021(1), 8867400. [DOI:10.1155/2021/8867400]
48. Silva, N. C. d., Gaspar, R. C., Chaves, A. S., Geraseev, L. C., Athayde, A. L. M., & Crocomo, L. F. (2019). Morphometric measurements of sheep fed with increasing levels of sunflower meal. Acta Scientiarum. Animal Sciences, 41, e42891. [DOI:10.4025/actascianimsci.v41i1.42891]
49. Siregar, R. S., Widiyastuti, Y., Siregar, M. S., & Silalahi, M. (2024). Ginger as an animal feed additive: an overview. The Journal of Animal and Plant Sciences, 34(1), 31-49. [DOI:10.36899/JAPS.2024.1.0693]
50. Song, C., Zhang, Y., Manzoor, M. A., & Li, G. (2022). Identification of alkaloids and related intermediates of Dendrobium officinale by solid-phase extraction coupled with high-performance liquid chromatography tandem mass spectrometry. Frontiers in Plant Science, 13, 952051. [DOI:10.3389/fpls.2022.952051]
51. Taghipour, M., Rouzbehan, Y., & Rezaei, J. (2021). Influence of diets containing different levels of Salicornia bigelovii forage on digestibility, ruminal and blood variables and antioxidant capacity of Shall male sheep. Animal Feed Science and Technology, 281, 115085. [DOI:10.1016/j.anifeedsci.2021.115085]
52. Tian, X., Li, J., Luo, Q., Wang, X., Wang, T., Zhou, D., . . . & Lu, Q. (2022). Effects of purple corn anthocyanin on growth performance, meat quality, muscle antioxidant status, and fatty acid profiles in goats. Foods, 11(9), 1255. [DOI:10.3390/foods11091255]
53. Tomala, G. M. S., Gaitén, Y. I. G., Hernández, R. D., del CB Gómez, Z., Cañarte, P. A. S., Sarmiento, N. D. J., & Prias, L. A. V. (2022). Phytochemical and antioxidant analysis of Ecuadorian's Malva. Journal of Pharmacy and Pharmacognosy Research, 10, 551-561. [DOI:10.56499/jppres22.1342_10.3.551]
54. Va, S., Supapong, C., & Chanjula, P. (2023). Effects of yeast and dried kratom leaves (Mitragyna speciosa [Korth] Havil.) supplementation on digestibility, rumen fermentation, blood metabolites and nitrogen balance in goats. Animal Bioscience, 37(2), 228. [DOI:10.5713/ab.23.0153]
55. Van Keulen, J., & Young, B. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44(2), 282-287. [DOI:10.2527/jas1977.442282x]
56. Van Soest, P. (1994). Nutritional Ecology of the Ruminant (Vol. 476): Cornell University Press. [DOI:10.7591/9781501732355]
57. Velazquez, A. E., Salem, A. Z., Khusro, A., Pliego, A. B., Rodríguez, G. B., & Elghandour, M. M. (2020). Sustainable mitigation of fecal greenhouse gases emission from equine using safflower and fish oils in combination with live yeast culture as additives towards a cleaner ecosystem. Journal of Cleaner Production, 256, 120460. [DOI:10.1016/j.jclepro.2020.120460]
58. Vyas, D., Alemu, A. W., McGinn, S. M., Duval, S. M., Kindermann, M., & Beauchemin, K. A. (2018). The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. Journal of Animal Science, 96(7), 2923-2938. [DOI:10.1093/jas/sky174]
59. Wang, S. P., Wang, W. J., Tan, Z. L., Liu, G. W., Zhou, C. F., & Yin, M. J. (2019). Effect of traditional Chinese medicine compounds on rumen fermentation, methanogenesis and microbial flora in vitro. Animal Nutrition, 5(2), 185-190. [DOI:10.1016/j.aninu.2018.09.004]
60. Wang, W., Wang, S., Luo, D., Zhao, X., Yin, M., Zhou, C., & Liu, G. (2019). Effect of Chinese herbal medicines on rumen fermentation, methanogenesis and microbial flora in vitro. South African Journal of Animal Science, 49(1), 63-70. [DOI:10.4314/sajas.v49i1.8]
61. Xie, K., Wang, Z., Guo, Y., Zhang, C., Zhu, W., & Hou, F. (2022). Gentiana straminea supplementation improves feed intake, nitrogen and energy utilization, and methane emission of Simmental calves in northwest China. Animal Bioscience, 35(6), 838. [DOI:10.5713/ab.21.0263]
62. Zakariyya, F., Susilo, A. W., Santoso, T. I., & Addy, H. S. (2018). Role of exogenous salicylic acid and benzoic acid applications to vascular streak dieback disease attack on cocoa seedlings. Pelita Perkebunan (A Coffee and Cocoa Research Journal), 33(3), 33-39. [DOI:10.22302/iccri.jur.pelitaperkebunan.v34i1.305]
63. Zhang, M., Bai, H., Zhao, Y., Wang, R., Li, G., Zhang, G., & Zhang, Y. (2022). Effects of dietary lysophospholipid inclusion on the growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites of finishing beef cattle. Antioxidants, 11(8), 1486. [DOI:10.3390/antiox11081486]
64. Zhang, W., Ren, F., Zang, C., Yang, F., Li, X., Huang, X., . . . & Li, X. (2024). Effects of dietary addition of ellagic acid on rumen metabolism, nutrient apparent digestibility, and growth performance in Kazakh sheep. Frontiers in Veterinary Science, 11, 1334026. [DOI:10.3389/fvets.2024.1334026]
65. Zhou, W., Pian, R., Yang, F., Chen, X., & Zhang, Q. (2021). The sustainable mitigation of ruminal methane and carbon dioxide emissions by co-ensiling corn stalk with Neolamarckia cadamba leaves for cleaner livestock production. Journal of Cleaner Production, 311, 127680. [DOI:10.1016/j.jclepro.2021.127680]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb