1. Alqazlan, N., Astill, J., Raj, S., & Sharif, S. (2022). Strategies for enhancing immunity against avian influenza virus in chickens: A review. Avian Pathology, 51, 211-235. [
DOI:10.1080/03079457.2022.2054309]
2. Almeida-Da-Silva, C.L.C., Savio, L.E.B., Coutinho-Silva, R., Ojcius, D.M. (2023). The role of NOD-like receptors in innate immunity. Frontiers in Immunology, 14, 1122586. [
DOI:10.3389/fimmu.2023.1122586]
3. Ashraf, A., & Shah, M. )2014(. Newcastle disease: present status and future challenges for developing countries. African Journal of Microbiology Research, 8, 411-416. [
DOI:10.5897/AJMR2013.6540]
4. Aziz Ali-Abadi1, F., Darmani Kuhi, H., Mohammadi, M., & Nazaran, M.H. (2017). Main and interaction effects of dietary protein and nano adjuvant on performance, antibody titres against Newcastle disease and white blood cells counts of broiler chickens. Research on Animal Production, 8, 63-69. [
DOI:10.29252/rap.8.16.63]
5. [In Persian]
6. Barrett, T., Suzek, T.O., Troup, D.B., Wilhite, S.E., Ngau, W.C., Ledoux, P., Rudnev, D., Lash, A.E., Fujibuchi, W., & Edgar, R. (2005). NCBI GEO: mining millions of expression profiles-database and tools. Nucleic Acids Research, 33, 562-566. [
DOI:10.1093/nar/gki022]
7. Behboudi, E., & Hamidi Sofiani, V. (2021). Immune responses to Newcastle disease virus as a minor zoonotic viral agent. Journal of Zoonotic Diseases, 5, 12-23.
8. Bumgarner, R. (2013). Overview of DNA microarrays: types, applications, and their future. Current Protocols in Molecular Biology, 101, 22. [
DOI:10.1002/0471142727.mb2201s101]
9. Del Vesco, A.P., Jang, H.J., Monson, M.S., & Lamont, S.J. (2021). Role of the chicken oligoadenylate synthase-like gene during in vitro Newcastle disease virus infection. Poultry Science, 100, 101067. [
DOI:10.1016/j.psj.2021.101067]
10. Diaz-Beneitez, E., Cubas-Gaona, L.L., Candelas-Rivera, O., Benito-Zafra, A., Sánchez-Aparicio, M.T., Miorin, L., Rodríguez, J.F., García-Sastre, A., & Rodríguez, D. (2022). Interaction between chicken TRIM25 and MDA5 and their role in mediated antiviral activity against IBDV infection. Frontiers in Microbiology, 13, 1068328 [
DOI:10.3389/fmicb.2022.1068328]
11. Dufva, M., 2009. Introduction to microarray technology. DNA Microarrays for biomedical research: Methods and Protocols, 1-22. [
DOI:10.1007/978-1-59745-538-1_1]
12. Ge, L., Zhang, Y., Zhao, X., Wang, J., Zhang, Y., Wang, Q., Yu, H., Zhang, Y., & You, Y. (2021). EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Molecular Immunology, 132, 132-141. [
DOI:10.1016/j.molimm.2021.01.030]
13. Ghasemi, M., Ghazvinian, K., Ahmadi Hamedani M., & Kafshdoozan, K. (2022). The Effect of Ceratonia siliqua in comparison with antibiotics and prebiotics on performance, carcass characteristics, immune system and blood parameters of broiler chickens. Research on Animal Production, 34, 1-10. [In Persian] [
DOI:10.52547/rap.12.34.1]
14. Huang, M., Xiao, J., Yan, C., Wang, T., & Ling, R. (2021). USP41 promotes breast cancer via regulating RACK1. Annals of Translational Medicine, 9, 1566. [
DOI:10.21037/atm-21-4921]
15. Khabiri, A., Toroghi, R., Mohammadabadi, M., & Tabatabaeizadeh, S.E. (2023). Introduction of a Newcastle disease virus challenge strain (sub-genotype VII. 1.1) isolated in Iran. Veterinary Research Forum, 14(4), e221.
16. Kawasaki, T., & Kawai, T. (2014) Toll-Like Receptor Signaling Pathways. Frontiers in Immunology, 5, 461. [
DOI:10.3389/fimmu.2014.00461]
17. Kinchen, J.M., & Ravichandran, K.S. (2008). Phagosome maturation: going through the acid test. Nature Review Molecular Cell Biology, 9, 781-95. [
DOI:10.1038/nrm2515]
18. Li, Y., Cui, Q., Zhou, B., Zhang, J., Guo, R., Wang, Y., & Xu, X. (2024). RSAD2, a pyroptosis-related gene, predicts the prognosis and immunotherapy response for colorectal cancer. American Journal of Cancer Research, 14, 2507. [
DOI:10.62347/RGJO6884]
19. Li, J.J., Yin, Y., Yang, H.L., Yang, C.W., Yu, C.L., Wang, Y., Yin, H.D., Lian, T., Peng, H., & Zhu, Q. (2020). mRNA expression and functional analysis of chicken IFIT5 after infected with Newcastle disease virus. Infection Genetics and Evolution, 86, 104585 [
DOI:10.1016/j.meegid.2020.104585]
20. Liu, J., Gu, T., Chen, J., Luo, S., Dong, X., Zheng, M., Chen, G., & Xu, Q. (2022). The TRIM25 gene in ducks: cloning, characterization and antiviral immune response. Genes, 13, 2090. [
DOI:10.3390/genes13112090]
21. Mohammadabadi, M.R., Nikbakhti, M., & Mirzaee, H.R. (2010). Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian Journal of Genetics, 46(4), 505-509 [
DOI:10.1134/S1022795410040198]
22. Mohammadifar, A., Faghih Imani, S.A., Mohammadabadi, M.R., & Soflaei, M. (2014). The effect of TGFb3 gene on phenotypic and breeding values of body weight traits in Fars native fowls. Agricultural Biotechnology Journal, 5, 125-136.
23. Mohammadifar, A., & Mohammadabadi, M.R. (2018) Melanocortin-3 receptor (MC3R) gene association with growth and egg production traits in Fars indigenous chicken. Malaysian Applied Biology, 47, 85-90.
24. Mpenda, F.N., Lyantagaye, S.L., & Buza, J. (2020). Association of chicken Mx1 polymorphisms with susceptibility in chicken embryos challenged with virulent Newcastle disease virus. Asian Journal of Animal Science, 14, 9-15. [
DOI:10.3923/ajas.2020.9.15]
25. Qing, F., & Liu, Z. (2023). Interferon regulatory factor 7 in inflammation, cancer and infection. Frontiers in Immunology, 14, 1190841. [
DOI:10.3389/fimmu.2023.1190841]
26. Rehwinke,l J., & Gack, M.U. (2020). RIG-I-Like Receptors: Their Regulation and Roles in RNA Sensing. Nature Imunology Review, 20: 537-51 [
DOI:10.1038/s41577-020-0288-3]
27. Rice, G.I., del Toro Duany, Y., Jenkinson, E.M., Forte, G.M., Anderson, B.H., Ariaudo, G., Bader-Meunier, B., Baildam, E.M., Battini, R., & Beresford, M.W. (2014). Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nature Genetics, 46, 503-509. [
DOI:10.1038/ng.2933]
28. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498-2504. [
DOI:10.1101/gr.1239303]
29. Sherman, B.T., Hao, M., Qiu, J., Jiao, X., Baseler, M.W., Lane, H.C., Imamichi, T., & Chang, W., (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research, 50, 216-221. [
DOI:10.1093/nar/gkac194]
30. Spangler, J. B., Moraga, I., Mendoza, J. L. & Garcia, K. C. (2015). Insights into cytokine-receptor interactions from cytokine engineering. Annual Review of Imonology, 139-167. [
DOI:10.1146/annurev-immunol-032713-120211]
31. Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A.L., Fang, T., Doncheva, N.T., & Pyysalo, S. (2023). The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51, D638-D646. [
DOI:10.1093/nar/gkac1000]
32. Torabi, A., & Roudbari, Z. (2023). Analysis of protein-protein interaction network based on altered genes expressed in lung tissue for avian influenza disease. Veterinary Research & Biological Products, 36, 68-76. [
DOI:10.32592/vrbp.2023.36.4.68]
33. Wang, J., Lin, Z., Liu, Q., Fu, F., Wang, Z., & Ma, J. (2022). Bat employs a conserved MDA5 gene to trigger antiviral innate immune responses. Frontiers in Immunilogy, 13, 904481. [
DOI:10.3389/fimmu.2022.904481]
34. Wang, L., Xue, Z., Wang, J., Jian, Y., Lu, H., Ma, H., Wang, S., Zeng, W. & Zhang, T. (2023). Targeted knockout of Mx in the DF-1 chicken fibroblast cell line impairs immune response against Newcastle disease virus: Mx knockout impairs response against NDV. Poultry Science, 102, 102855. [
DOI:10.1016/j.psj.2023.102855]
35. Wilden, H., Fournier, P., Zawatzky, R. & Schirrmacher, V. (2009). Expression of RIG-I, IRF3, IFN-β and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. Inernational Journal of Oncology, 34, 971-982. [
DOI:10.3892/ijo_00000223]
36. Yang, X., Arslan, M., Liu, X., Song, H., Du, M., Li, Y., & Zhang, Z. (2020). IFN-γ establishes interferon-stimulated gene-mediated antiviral state against Newcastle disease virus in chicken fibroblasts. Acta Biochimica et Biophysica Sinica, 20 1-13. [
DOI:10.1093/abbs/gmz158]
37. Yang, C., Liu, F., Chen, S., Wang, M., & Jia, R. (2015). Identification of 2'-5'-oligoadenylate synthetase-like gene in goose: Gene structure, expression patterns, and antiviral activity against Newcastle disease virus. Journal of Interferon and Cytokine Research, 36, 563-572. [
DOI:10.1089/jir.2015.0167]
38. Yu, L., & Liu, P. (2021). Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduction and Targeted Therapy, 6, 170. [
DOI:10.1038/s41392-021-00554-y]
39. Zhang, B., Liu, X., Chen, W., & Chen, L. (2013). IFIT5 potentiates anti-viral response through enhancing innate immune signaling pathways. Acta Biochimica et Biophysica Sinica, 45, 867-874. [
DOI:10.1093/abbs/gmt088]
40. Zhng, D., Ding, Z., & Xu, X. (2023). Pathologic mechanisms of the Newcastle disease virus. Viruses, 15, 864. [
DOI:10.3390/v15040864]
41. Zvara, Á., Kitajka, K., Faragó, N., & Puskás, L.G. (2015). Microarray technology. Acta Biologica Szegediensis, 59, 51-67.