1. Ahmadiyan, A., Fatahnia, F., Taasoli, G., Akbari Graee, M., & Kazemi Bonchenari, M. (2018). Effect of fat supplementation (Ca-salts) in starter diets differed in rumen undegradable protein levels on performance, growth and blood metabolites of Holstein calves. Iranian Journal of Animal Science, 49(1), 133-143. Doi: 10.22059/IJAS.2018.252471.653617. [In Persian]
2. Azad-Shahraki, M., Khani, M., Ahmadi, F., Ariana, M., & Beiranvand, H. (2019). Palmitic acid supplementation does not improve performance of pre-ruminant calves. Animal Feed Science and Technology, 255, 114220. DOI:10.1016/j.anifeedsci.2019.114220. [
DOI:10.1016/j.anifeedsci.2019.114220]
3. Bach, A. (2012). Ruminant Nutrition Symposium: Optimizing Performance of the Offspring: nourishing and managing the dam and postnatal calf for optimal lactation, reproduction, and immunity. Journal of Animal Science, 90(6), 1835-1845. Doi: 10.2527/jas.2011-4516. Epub 2011 Sep 16. [
DOI:10.2527/jas.2011-4516]
4. Ballou, M. A., & DePeters, E. J. (2008). Supplementing milk replacer with omega-3 fatty acids from fish oil on immunocompetence and health of Jersey calves. Journal of Dairy Science, 91(9), 3488-3500. Doi.org/10.3168/jds.2008-1017. [
DOI:10.3168/jds.2008-1017]
5. Brautigan, D. L., Li, R., Kubicka, E., Turner, S. D., Garcia, J. S., Weintraut, M. L., & Wong, E. A. (2017). Lysolecithin as feed additive enhances collagen expression and villus length in the jejunum of broiler chickens. Poultry Science, 96(8), 2889-2898. Doi.org/10.3382/ps/pex078. [
DOI:10.3382/ps/pex078]
6. Chen, G. J., Zhang, R., Wu, J. H., Shang, Y. S., Li, X. D., Qiong, M. & Xiong, X. Q. (2020). Effects of soybean lecithin supplementation on growth performance, serum metabolites, ruminal fermentation and microbial flora of beef steers. Livestock Science, 240, 104121. Doi.org/10.1016/j.livsci.2020.104121. [
DOI:10.1016/j.livsci.2020.104121]
7. Fokkink, W. B., Hill, T. M., Bateman II, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2009). Selenium yeast for dairy calf feeds. Animal Feed Science and Technology, 153(3-4), 228-235. Doi:10.1016/j.anifeedsci.2009.06.015. [
DOI:10.1016/j.anifeedsci.2009.06.015]
8. Foroozandeh, A. D., Amini, H. R., Ghalamkari, G. R., Shahzeydi, M., & Nasrollahi, S. M. (2014). The effect of fat type and L-carnitine administration on growth, feed digestibility and blood metabolites of growing Afshari lambs. Livestock Science, 164, 67-71. Doi: 10.1016/j.livsci.2014.03.019. [
DOI:10.1016/j.livsci.2014.03.019]
9. Gallo, S. B., Brochado, T., Brochine, L., Passareli, D., Costa, S. F., Bueno, I. D. S. & Tedeschi, L. O. (2019). Effect of biosurfactant added in two different oil source diets on lamb performance and ruminal and blood parameters. Livestock Science, 226, 66-72. Doi:10.1016/j.livsci.2019.06.006. [
DOI:10.1016/j.livsci.2019.06.006]
10. Gelsinger, S. L., Heinrichs, A. J., & Jones, C. M. (2016). A meta-analysis of the effects of preweaned calf nutrition and growth on first-lactation performance. Journal of Dairy Science, 99(8), 6206-6214. Doi: 10.3168/jds.2015-10744. Epub 2016 May 18. [
DOI:10.3168/jds.2015-10744]
11. Ghasemi, E., Azad-Shahraki, M., & Khorvash, M. (2017). Effect of different fat supplements on performance of dairy calves during cold season. Journal of Dairy Science, 100(7), 5319-5328. Doi: 10.3168/jds.2016-11827. Epub 2017 May 10. [
DOI:10.3168/jds.2016-11827]
12. Haetinger, V. S., Dalmoro, Y. K., Godoy, G. L., Lang, M. B., De Souza, O. F., Aristimunha, P., & Stefanello, C. (2021). Optimizing cost, growth performance, and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens. Poultry Science, 100(4), 101025. Doi: 10.1016/j.psj.2021.101025 [
DOI:10.1016/j.psj.2021.101025]
13. Hill, T. M., Aldrich, J. M., Schlotterbeck, R. L., & Bateman Ii, H. G. (2007). Amino acids, fatty acids, and fat sources for calf milk replacers. The Professional Animal Scientist, 23(4), 401-408. Doi: 10.15232/S1080-7446(15)30995-5. [
DOI:10.15232/S1080-7446(15)30995-5]
14. Hill, T. M., Aldrich, J. M., Schlotterbeck, R. L., & Bateman II, H. G. (2007). Effects of changing the fat and fatty acid composition of milk replacers fed to neonatal calves. The Professional Animal Scientist, 23(2), 135-143. Doi:10.15232/S1080-7446(15)30953-0. [
DOI:10.15232/S1080-7446(15)30953-0]
15. Hill, T. M., Bateman Ii, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2009). Effects of fat concentration of a high-protein milk replacer on calf performance. Journal of Dairy Science, 92(10), 5147-5153. Doi.org/10.3168/jds.2009-2245. [
DOI:10.3168/jds.2009-2245]
16. Hill, T. M., Bateman II, H. G., Aldrich, J. M., & Schlotterbeck, R. L. (2011). Effect of various fatty acids on dairy calf performance. The Professional Animal Scientist, 27(3), 167-175. Doi: 10.15232/S1080-7446(15)30470-8. [
DOI:10.15232/S1080-7446(15)30470-8]
17. Hill, T. M., Bateman II, H. G., Aldrich, J. M., Quigley, J. D., & Schlotterbeck, R. L. (2015). Inclusion of tallow and soybean oil to calf starters fed to dairy calves from birth to four months of age on calf performance and digestion. Journal of Dairy Science, 98(7), 4882-4888. Doi.org/10.3168/jds.2015-9376. [
DOI:10.3168/jds.2015-9376]
18. Huang, J., Yang, D. D. & Wang, T. (2007). Effects of replac-ing soy-oil with soy-lecithin on growth performance, nutrient utilization and serum parameters of broilers fed corn-based diets. Asian- Australasian Journal Animal Science, 20, 1880-1886. doi: 10.5713/AJAS.2007.1880. [
DOI:10.5713/ajas.2007.1880]
19. Huo, Q., Li, B., Cheng, L., Wu, T., You, P., Shen, S., & Sun, X. (2019). Dietary supplementation of lysophospholipids affects feed digestion in lambs. Animals, 9(10), 805. Doi: 10.3390/ani9100805. [
DOI:10.3390/ani9100805]
20. Jaster, E. H., McCoy, G. C., Spanski, N., & Tomkins, T. (1992). Effect of extra energy as fat or milk replacer solids in diets of young dairy calves on growth during cold weather. Journal of dairy science, 75(9), 2524-2531. Doi: 10.3168/jds.S0022-0302 (92)78014-X. [
DOI:10.3168/jds.S0022-0302(92)78014-X]
21. Jones, D. B., Hancock, J. D., Harmon, D. L., & Walker, C. E. (1992). Effects of exogenous emulsifiers and fat sources on nutrient digestibility, serum lipids, and growth performance in weanling pigs. Journal of Animal Science, 70(11), 3473-3482. Doi: 10.2527/1992.70113473x. [
DOI:10.2527/1992.70113473x]
22. Kadkhoday, A., Riasi, A., Alikhani, M., Dehghan-Banadaky, M., & Kowsar, R. (2017). Effects of fat sources and dietary C18: 2 to C18: 3 fatty acids ratio on growth performance, ruminal fermentation and some blood components of Holstein calves. Livestock Science, 204, 71-77. Doi: 10.1016/j.livsci.2017.08.012. [
DOI:10.1016/j.livsci.2017.08.012]
23. Khan, M. A., Bach, A., Weary, D. M., & Von Keyserlingk, M. A. G. (2016). Invited review: Transitioning from milk to solid feed in dairy heifers. Journal of Dairy Science, 99(2), 885-902. Doi: 10.3168/jds.2015-9975. [
DOI:10.3168/jds.2015-9975]
24. Lee, C., Morris, D. L., Copelin, J. E., Hettick, J. M., & Kwon, I. H. (2019). Effects of lysophospholipids on short-term production, nitrogen utilization, and rumen fermentation and bacterial population in lactating dairy cows. Journal of Dairy Science, 102(4), 3110-3120. Doi: 10.3168/jds.2018-15777. [
DOI:10.3168/jds.2018-15777]
25. Manso, T., Castro, T., Mantecón, A. R., & Jimeno, V. (2006). Effects of palm oil and calcium soaps of palm oil fatty acids in fattening diets on digestibility, performance and chemical body composition of lambs. Animal Feed Science and Technology, 127(3-4), 175-186. Doi:10.1016/j.anifeedsci.2005.08.013. [
DOI:10.1016/j.anifeedsci.2005.08.013]
26. Melegy, T., Khaled, N. F., El-Bana, R., & Abdellatif, H. (2010). Dietary fortification of a natural biosurfactant, lysolecithin in broiler. African Journal of Agricultural Research, 5(21), 2886-2892. Doi: 10.5897/AJAR.9000172.
27. Mohtashami, B., & Behrouzyar, H. K. (2023). Effect of omega-3 and omega-6 fatty acid on growth performance, blood metabolites and health indicators of weaning Holstein calves. Research on Animal Production, 14(39), 56-6. Doi: 10.61186/rap.14.39.56. [In Persian] [
DOI:10.61186/rap.14.39.56]
28. Mohtashami, B., khalilvandi-behroozyar, H., Pirmohammadi, R., Dehgan Bonadaki, M., Dirandeh, E., & kazemi bonchenari, M. (2021). Effect of Bioactive Fatty Acids on Growth Performance of Milk-Fed Holstein Dairy Calves Under Cold Stress. Research on Animal Production, 12(33), 65-73. Doi:10.52547/rap.12.33.65 [In Persian] [
DOI:10.52547/rap.12.33.65]
29. National Research Council, Committee on Animal Nutrition, & Subcommittee on Dairy Cattle Nutrition. (2001). Nutrient requirements of dairy cattle: 2001. National Academies Press.
30. Qiu, Y., Liu, S., Hou, L., Li, K., Wang, L., Gao, K., & Jiang, Z. (2021). Supplemental choline modulates growth performance and gut inflammation by altering the gut microbiota and lipid metabolism in weaned piglets. The Journal of Nutrition, 151(1), 20-29. Doi: 10.1093/jn/nxaa331. [
DOI:10.1093/jn/nxaa331]
31. Raju, M. V. L. N., Rao, S. R., Chakrabarti, P. P., Rao, B. V. S. K., Panda, A. K., Devi, B. P., & Prasad, R. B. N. (2011). Rice bran lysolecithin as a source of energy in broiler chicken diet. British Poultry Science, 52(6), 769-774. Doi: 10.1080/00071668.2011.640929. [
DOI:10.1080/00071668.2011.640929]
32. Reis, M. E., Toledo, A. F. D., da Silva, A. P., Poczynek, M., Fioruci, E. A., Cantor, M. C., & Bittar, C. M. M. (2021). Supplementation of lysolecithin in milk replacer for Holstein dairy calves: Effects on growth performance, health, and metabolites. Journal of Dairy Science, 104(5), 5457-5466. Doi: 10.3168/jds.2020-19406. [
DOI:10.3168/jds.2020-19406]
33. Song, W. S., Yang, J., Hwang, I. H., Cho, S., & Choi, N. J. (2015). Effect of Dietary Lysophospholipid (LIPIDOL™) Supplementation on the Improvement of Forage Usage and Growth Performance in Hanwoo Heifer. Journal of the Korean Society of Grassland and Forage Science, 35(3), 232-237. Doi: 10.5333/KGFS.2015.35.3.232. [
DOI:10.5333/KGFS.2015.35.3.232]
34. Urie, N., Lombard, J., Shivley, C., Kopral, C., Adams, A., Earleywine, T., Olson, J., & Garry, F. (2018). Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. Journal of Dairy Science, 101(10), 9229-9244. Doi: 10.3168/jds.2017-14019. [
DOI:10.3168/jds.2017-14019]
35. Zampiga, M., Meluzzi, A., & Sirri, F. (2016). Effect of dietary supplementation of lysophospholipids on productive performance, nutrient digestibility and carcass quality traits of broiler chickens. Italian Journal of Animal Science, 15(3), 521-528. Doi: 10.1080/1828051X.2016.1192965 [
DOI:10.1080/1828051X.2016.1192965]
36. Zhang, B., Haitao, L., Zhao, D., Guo, Y., & Barri, A. (2011). Effect of fat type and lysophosphatidylcholine addition to broiler diets on performance, apparent digestibility of fatty acids, and apparent metabolizable energy content. Animal Feed Science and Technology, 163(2-4), 177-184. Doi: 10.1016/j.anifeedsci.2010.10.004. [
DOI:10.1016/j.anifeedsci.2010.10.004]
37. Zhang, M., Bai, H., Zhao, Y., Wang, R., Li, G., Zhang, Y., & Jiao, P. (2022). Effects of supplementation with lysophospholipids on performance, nutrient digestibility, and bacterial communities of beef cattle. Frontiers in Veterinary Science, 9, 927369. Doi: 10.3389/fvets.2022.927369. [
DOI:10.3389/fvets.2022.927369]
38. Zhao, P. Y., Li, H. L., Hossain, M. M., & Kim, I. H. (2015). Effect of emulsifier (lysophospholipids) on growth performance, nutrient digestibility and blood profile in weanling pigs. Animal Feed Science and Technology, 207, 190-195. Doi: 10.1016/j.anifeedsci.2015.06.007. [
DOI:10.1016/j.anifeedsci.2015.06.007]