1. Arab, H., Jamshidi, A., Rassuli, R., Shams, G., & Hassanzadeh, M. H. (2006). Generation of hydroxyl radicals during ascites experimentally induced in broilers. British Poultry Science, 47, 216-222. doi: 10.1080/00071660600611102. [
DOI:10.1080/00071660600611102]
2. Abd El‐Wahab, A., Mahmoud, R.E., Ahmed, M. F., & Salama, M. F. (2019). Effect of dietary supplementation of calcium butyrate on growth performance, carcass traits, intestinal health and pro‐inflammatory cytokines in Japanese quails. Journal of Animal Physiology and Animal Nutrition, 103(6), 1768-75. [
DOI:10.1111/jpn.13172]
3. Abd El-Hack, M. E., Alaidaroos, B. A., Farsi, R. M., Abou-Kassem, D. E., El-Saadony, M. T., Saad, A. M., ... & Ashour, E. A. (2021). Impacts of supplementing broiler diets with biological curcumin, zinc nanoparticles and Bacillus licheniformis on growth, carcass traits, blood indices, meat quality and cecal microbial load. Animals, 11(7), 1878. [
DOI:10.3390/ani11071878]
4. Bao, L., Li, J., Zha, D., Zhang, L., Gao, P., Yao, T., & Wu, X. (2018). Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. International Immunopharmacology, 54, 245-253. [
DOI:10.1016/j.intimp.2017.11.021]
5. Chen, J., Yu, B., Chen, D., Huang, Z., Mao, X., Zheng, P., ... & He, J. (2018a). Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. The Journal of Nutritional Biochemistry, 59, 84-92. [
DOI:10.1016/j.jnutbio.2018.06.005]
6. Chen, J., Li, Y., Yu, B., Chen, D., Mao, X., Zheng, P., Luo, J., & He, J. (2018b). Dietary chlorogenic acid improves growth performance of weaned pigs through maintaining antioxidant capacity and intestinal digestion and absorption function. Journal of Animal Science, 96:1108-1118. [
DOI:10.1093/jas/skx078]
7. Chen, F., Zhang, H., Zhao, N., Yang, X., Du, E., Huang, S., ... & Wei, J. (2021). Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress. Animal Science Journal, 92(1), e13619. [
DOI:10.1111/asj.13619]
8. Chen, Y. P., Gu, Y.F., Zhao, H. R., & Zhou. M. Y. (2021b). Dietary squalene supplementation alleviates diquat-induced oxidative stress and liver damage of broiler chickens. Poultry Science, 100: 100919. [
DOI:10.1016/j.psj.2020.12.017]
9. Elitok, B. (2018). Importance of stress factors in poultry. Juniper Online Journal of Case Studies, 7, 20-22. doi: 10.19080/JOJCS.2018.07.555723. [
DOI:10.19080/JOJCS.2018.07.555723]
10. Fathi, M., Haydari, M., & Tanah, T. (2016a). Influence of Dietary Aspirin on Growth Performance, Antioxidant Status, and Mortality due to Ascites in Broiler Chickens. Poultry Science Journal, 4(2), 139-146. doi: 10.22069/PSJ.2016.10701.1178.
11. Fathi, M., & Haydari, T. (2016b). Effects of atenolol on growth performance, mortality due to ascites,
12. antioxidant status and some blood parameters in broilers under induced ascites. Iranian Journal of Animal Science Research, 8 (2), 329-339. doi:10.22067/IJASR.V8I2.47188. [In Persian]
13. Fathi, M., Nik Guo, A., & Mehri, M. (2018). Effects of Cinnamon Powder Levels on Performance, Antioxidant Status, Meat Oxidative Stability, Enzymes Activity and Some Blood Parameters in Broiler Chickens. Research on Animal Production (Scientific and Research), 8(17), 18-25. doi:10.29252/rap.8.17.18. [In Persian] [
DOI:10.29252/rap.8.17.18]
14. Fathi. M., Tanha. T., & Ahmadi, M. (2019). Effect of Supplementation of Prebiotics of Mannan Oligosaccharide (MOS) on Growth Performance, Blood Parameters and Mortality Rate of Male Broiler Chicks under Induced Ascites by Sodium Chloride. Research on Animal Production (Scientific and Research), 10 (25), 8-15. doi:10.29252/rap.10.25.8 . [In Persian] [
DOI:10.29252/rap.10.25.8]
15. Fathi, M., Tanha, T., & Saeedyan, S. (2022). Influence of dietary lycopene on growth performance, antioxidant status, blood parameters and mortality in broiler chicken with cold-induced ascites. Archive Animal Nutrition, 8,1-11. doi: 10.1080/1745039X.2022.2046451. [
DOI:10.1080/1745039X.2022.2046451]
16. Fathi, M., Saeedyan, S., Baghaeifar, Z., & Varzandeh, S. (2023a). Chitosan oligosaccharides in the diet of broiler chickens under cold stress had anti-oxidant and anti-inflammatory effects and improved hematological and biochemical indices, cardiac index, and growth performance. Livestock Science, 276, 105338. doi: 10.1016/j.livsci.2023.105338. [
DOI:10.1016/j.livsci.2023.105338]
17. Fathi, M., Saeedyan, S., & Kaoosi, M. (2023). Effect of melatonin on oxidative stress, inflammation cytokines, biochemical parameters and growth performance in broiler chicken under induced stress by dexamethasone. Acta Agriculturae Scandinavica, Section A-Animal Science, 72(3-4), 149-157. [
DOI:10.1080/09064702.2023.2222733]
18. Fathi, M., Hosayni, M., Alizadeh, S., Zandi, R., Rahmati, S., & Rezaee, V. (2023). Effects of black cumin (Nigella Sativa) seed meal on growth performance, blood and biochemical indices, meat quality and cecal microbial load in broiler chickens. Livestock Science, 274, 105272. [
DOI:10.1016/j.livsci.2023.105272]
19. Fathi, M., Hosayni, M., Alizadeh, S., Zandi, R., Rahmati, S., Saeidian, S., Shirazi Fard, M., Rezaee, V., Zarrinkavyani, K., & Mardani, P. (2024). Effects of chicory (Cichorium intybus L.) distillation wastewater on antioxidant status, immune response, caecal microbial population, growth performance and meat quality in broiler chickens. Livestock Science, 282, 105442. DOI: 10.1016/j.livsci.2024.105442. [
DOI:10.1016/j.livsci.2024.105442]
20. Ghafarifarsani, H., Nedaei, S. H., Hoseinifar, S. H. & Doan, V. H. (2023). Effect of Different Levels of Chlorogenic Acid on Growth Performance, Immunological Responses, Antioxidant Defense, and Disease Resistance of Rainbow Trout (Oncorhynchus mykiss) Juveniles. Aquaculture Nutrition, Article ID 3679002, 13. doi: 10.1155/2023/3679002 [
DOI:10.1155/2023/3679002]
21. Han, D., Gu, X., Gao, J., Wang, Z., Liu, G., Barkema, H. W., & Han, B. (2019). Chlorogenic acid promotes the Nrf2/HO-1 anti-oxidative pathway by activating p21Waf1/Cip1 to resist dexamethasone-induced apoptosis in osteoblastic cells. Free Radical Biology and Medicine, 137, 1-12. [
DOI:10.1016/j.freeradbiomed.2019.04.014]
22. Liang, N., & Kitts, D. D. (2015). Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 8, 16. [
DOI:10.3390/nu8010016]
23. Liang, N., Dupuis, H. J., Yada, R. Y., & Kitts, D. D. (2019). Chlorogenic acid isomers directly interact with Keap1-Nrf2 signaling in Caco-2 cells. Molecular and Cellular Biochemistry, 457, 105-118 [
DOI:10.1007/s11010-019-03516-9]
24. Lee, M. T., Lin, C. W., & Lee, T. T. (2019). Potential crosstalk of oxidative stress and immune response in poultry through phytochemicals - a review. Asian-Australian Journal of Animal Science, 32, 309-319. [
DOI:10.5713/ajas.18.0538]
25. Lu, H., Tian, Z., Cui, Y., Liu, Z., & Ma, X. (2020). Chlorogenic acid: a comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Comprehensive Reviews in Food Science and Food Safety, 19, 3130-3158. [
DOI:10.1111/1541-4337.12620]
26. Liu, H., Chen, P., Lv, X., Zhou, Y., Li, X., Ma, S., &. Zhao. J. (2022a). Effects of chlorogenic acid on performance, anticoccidial indicators, immunity, antioxidant status, and intestinal barrier function in coccidia-infected broilers. Animals, 12, 963. [
DOI:10.3390/ani12080963]
27. Liu, H., Li, S., Shi, Y., Zhou, K., Zhang, Y., Wang, Y., & Zhao, J. (2022b). Chlorogenic acid improves growth performance and intestinal health through autophagy-mediated nuclear factor erythroid 2-related factor 2 pathway in oxidatively stressed broilers induced by dexamethasone. Poultry Science, 101, 102036. [
DOI:10.1016/j.psj.2022.102036]
28. Ohtsu, H., Yamazaki, M., Abe, H., Murakami, H., & Toyomizu M. (2015). Heat stress modulates cytokine gene expression in the spleen of broiler chickens. Japanese Poultry Science Japanese Poultry Science, 52(4), 282-287. DOI: 10.2141/jpsa.0150062 [
DOI:10.2141/jpsa.0150062]
29. Saqib, M., SIqbal, S., Mahmood, A., & Akram, R. (2016). Theoretical investigation for exploring the antioxidant potential of chlorogenic acid: a density functional theory study. International Journal of Food Properties, 19, 745-751. [
DOI:10.1080/10942912.2015.1042588]
30. Shin, H. S., Satsu, H., Bae, M. J., Totsuka, M., & Shimizu, M. (2017). Catechol groups enable reactive oxygen species scavenging-mediated suppression of PKD-NFkappaB-IL-8 signaling pathway by chlorogenic and caffeic acids in human intestinal cells. Nutrients, 9, 165. [
DOI:10.3390/nu9020165]
31. Shi, H., Shi, A., Dong, L., Lu, X., Wang, Y., Zhao, J., Dai, F., & Guo, X. (2016). Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clinical Nutrition, 35, 1366-1373 [
DOI:10.1016/j.clnu.2016.03.002]
32. Shi, A., Shi, H., Wang, Y., Liu, X., Cheng, Y., Li, H. Zhao, H., Wang, S., & Dong, L. (2018). Activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation contribute to the protectiveeffect of chlorogenic acid on acute liver injury. International Immunopharmacology, 54, 125-130. [
DOI:10.1016/j.intimp.2017.11.007]
33. Song, D., Zhang, S., Chen, A., Songy, Z., & Shi, S. (2024). Comparison of the effects of chlorogenic acid isomers and their compounds on alleviating oxidative stress injury in broilers. Poultry Science, 103, 103649. doi: 10.1016/j.psj.2024.103649. [
DOI:10.1016/j.psj.2024.103649]
34. Surai, P. F., & Fisinin, V. I. (2016). Vitagenes in poultry production: Part 3. Vitagene concept development. World's Poultry Science Journal, 72, 751. doi: 10.1017/S0043933916000751. [
DOI:10.1017/S0043933916000751]
35. Tan, H., Zhen, W., Bai, D., Liu, K., He, X., Ito, K., ... & Ma, Y. (2023). Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress. Poultry Science, 102(5), 102623. [
DOI:10.1016/j.psj.2023.102623]
36. Tosovic, J., Markovic, J., Dimitric Markovic, M., Mojovic, M., & Milenkovic, D. (2017). Antioxidative mechanisms in chlorogenic acid. Food Chemistry, 237, 390-398. [
DOI:10.1016/j.foodchem.2017.05.080]
37. Tsiouris, V., Georgopoulou, I., Batzios, C., Pappaioannou, N., Ducatelle, R., & Fortomaris, P. (2018). Heat stress as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathology, 47, 24574. doi: 10.1080/03079457.2018.1524574. [
DOI:10.1080/03079457.2018.1524574]
38. Tajik, N., Tajik, M., Mack, I., & Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. European Journal of Nutrition, 56, 2215-2244 [
DOI:10.1007/s00394-017-1379-1]
39. Ustundag, A. O., & Ozdogan, M. (2015). Usage possibilities of mulberry leaves in poultry nutrition. Scientific Papers. Journal of Animal Science, 58, 170-178.
40. Weinbrenner, T., Fito, M., Torre, R. D., Saez, G. T., Rijken, P., & Tormos, C. (2004). Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. Journal of Nutrition, 134, 2314-2321. [
DOI:10.1093/jn/134.9.2314]
41. Zeng, J., Zhang, D., Wan, X., Bai, Y., Yuan, C., Wang, T., Yuan, D., C Zhang, C., & Liu, C. (2020). Chlorogenic acid suppresses miR-155 and ameliorates ulcerative colitis through the NF-kB/NLRP3 inflammasome pathway. Molecular Nutrition & Food Research, 64: e2000452 [
DOI:10.1002/mnfr.202000452]
42. Zha, P., Wei, L., Liu, W., Chen, Y., & Zhou, Y. (2023). Effects of dietary supplementation with chlorogenic acid on growth performance, antioxidant capacity, and hepatic inflammation in broiler chickens subjected to diquat-induced oxidative stress. Poultry Science, 102, 102479. doi.org/10.1016/j.psj.2023.102479 [
DOI:10.1016/j.psj.2023.102479]
43. Zhang, Y., Wang, Y., Chen, D., Yu, B., Zheng, P., Mao, X., Luo, Y., Li, Y., & He, J. (2018). Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food & Function, 9, 4968-4978. [
DOI:10.1039/C8FO01126E]
44. Zhang, X., Zhao, Q., Ci, X., Chen, S., Xie, Z., Li, H., Zhang, H., Chen, F., & Xie, Q. (2020). Evaluation of the efficacy of chlorogenic acid in reducing small intestine injury, oxidative stress, and inflammation in chickens challenged with Clostridium perfringens type A. Poultry Science, 99, 6606-6618. [
DOI:10.1016/j.psj.2020.09.082]
45. Zhao, S. J., Deng, W., & Liu, H. W. (2019). Effects of chlorogenic acid-enriched extract from Eucommia ulmoides leaf on performance, meat quality, oxidative stability, and fatty acid profile of meat in heat-stressed broilers. Poultry Science, 98, 3040-3049. doi:10.3382/ps/pez081. [
DOI:10.3382/ps/pez081]