دوره 16، شماره 3 - ( پاییز 1404 )                   جلد 16 شماره 3 صفحات 204-192 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khani M, Fattah A, Ebrahimi-Mahmoudabad S R, Joezy-Shekalgorabi S. (2025). The Impact of Dietary Cation-Anion Difference Variation on Physiological Responses and Rumen Fermentation in Heat-Stressed Male Zandi Sheep. Res Anim Prod. 16(3), 192-204. doi:10.61882/rap.2025.1487
URL: http://rap.sanru.ac.ir/article-1-1487-fa.html
خانی محمد، فتاح امیر، ابراهیمی محمود آباد سید روح اله، جوزی شکالگورابی ساحره.(1404). بررسی تأثیر تغییرات اختلاف کاتیون-آنیون جیره بر پاسخ‌های فیزیولوژیکی و تخمیر شکمبه در قوچ‌های زندی دچار تنش گرمایی پژوهشهاي توليدات دامي 16 (3) :204-192 10.61882/rap.2025.1487

URL: http://rap.sanru.ac.ir/article-1-1487-fa.html


1- گروه علوم دامی، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران
چکیده:   (1075 مشاهده)
چکیده مبسوط
مقدمه و هدف: تنش گرمایی یکی از چالش‌های مهم در صنعت دامپروری کشور به ویژه پرورش گوسفند است. افزایش بیش از حد دمای بدن در چنین شرایطی با کاهش مصرف خوراک و ابقاء انرژی همراه می شود و در نتیجه تولید دام افت می‌کند، دوره پرواربندی طولانی‌تر می شود و خوراک مصرف‎ شده جهت افزایش وزن، صرف مقابله با تنش گرمایی می‌گردد و در نتیجه زیان‌های اقتصادی قابل توجهی تحمیل می‌شود. از این روی، انتخاب راهکارهای مدیریتی و تغذیه‌ای کارآمد از اهمیت ویژه‌ای برخوردار است. تحقیقات نشان داده اند که تغییر سطوح اختلاف کاتیون - آنیون جیره (DCAD) در شرایط تنش گرمایی می‌تواند از طریق افزایش الکترولیت‌های جیره و تغییر تعادل اسید - باز خون باعث جبران دفع زیاد مواد معدنی و کاهش مصرف خوراک شود و آثار منفی تنش حرارتی را کاهش ‌دهد. از طرفی، از آنجایی که روز به روز قیمت خوراک مصرفی دام افزایش می‌یابد، اضافه کردن مواد مغذی که قیمت پایین دارند و چالش‌های ناشی از تنش گرمایی را هموار می‌سازند، می‌تواند گزینه مناسبی برای دستیابی به بازده حاصل از مصرف خوراک معمول در شرایط نرمال باشد. بنا بر این، بررسی اثرات تغییر سطوح اختلاف کاتیون - آنیون جیره بر دام ضمن ارائه دید مناسب برای پرورش‌دهندگان، راهکارهای مناسبی را در اختیار کارشناسان حوزه طراحی جیره قرار می‌دهد. در این راستا، این مطالعه با هدف بررسی تأثیر سطوح مختلف اختلاف کاتیون - آنیون جیره بر فراسنجه‌های قابلیت هضم مواد آلی، فراسنجه‌های خون و تخمیر شکمبه در قوچ‌های زندی نر تحت تنش گرمایی انجام شد.
مواد و روش‌ها: به‎ منظور بررسی هدف پژوهش حاضر، 40 رأس بره نر زندی با میانگین وزن ۳۹ کیلوگرم به طور تصادفی در پنج گروه تیمار، هرکدام با هشت تکرار، اختصاص داده شدند. جیره‌ها برای سطوح مختلف DCAD (۱۵۰، ۳۰۰، ۴۵۰، ۶۰۰ و ۷۵۰ میلی ‌اکی والان بر کیلوگرم ماده خشک) طراحی گردیدند. دوره آزمایش پس از یک دوره تطبیق ۲۱ روزه، ۱۰۰ روز طول کشید. برای تعیین ترکیب شیمیایی جیره، نمونه‌های روزانه از جیره جمع‌آوری و براساس دستورالعمل‌های AOAC بررسی گردیدند. سطوح سدیم، پتاسیم و کلر با استفاده از دستگاه جذب اتمی اندازه‌گیری و مصرف روزانه ماده خشک با در نظر گرفتن باقیمانده اندازه‌گیری و محاسبه شدند. فراسنجه‌های خونی با استفاده از روش‌های AOAC اندازه‌گیری گردیدند. اسمولالیته مایع شکمبه با استفاده از اسمومتر اندازه‌گیری گردید و اسیدهای چرب فرار مطابق با دستورالعمل‌ها آنالیز شدند. همچنین، سطوح N- آمونیاک با استفاده از آنالیز سالیسیلات - هیپوکلریت تعیین شد. شاخص دمایی- رطوبتی برای بررسی تنش گرمایی مورد ارزیابی قرار گرفت. تجزیه و تحلیل آماری نیز با استفاده از نرم‌افزار SAS نسخه 9/4 با بهره‌گیری از روش GLM صورت پذیرفت و برای مقایسه‌های میانگین پس از آزمون روش حداقل تفاوت معنی‎ دار (LSD) به‎ کار گرفته شد.
یافته‌ها: در طول دوره آزمایش، شاخص دمایی- رطوبتی به طور مستمر بالای 75 بود و وجود تنش گرمایی را تاکید ‌نمود. دمای رکتال گروه کنترل با دیگر گروه‌ها تفاوت قابل توجهی نداشت. تفاوت آماری معنی‌داری بین تیمارهای حاوی سطوح مختلف DCAD از نظر مصرف ماده خشک، دریافت مواد مغذی و قابلیت هضم ظاهری وجود داشت (0/05<P)؛ به طوری‌ که مصرف ماده خشک، قابلیت هضم پروتئین خام و قابلیت هضم ماده خشک در گروه کنترل به طور قابل توجهی پایین‌تر از بقیه تیمارها بودند (0/05<P). علاوه ‌بر این،pH  شکمبه در گروه کنترل به طور قابل‌توجهی کمتر از بقیه تیمارها بود (0/05<P). با این ‎‎حال، فراسنجه‌های تخمیر شکمبه شامل اسید بوتیریک، ظرفیت بافر، اسید استیک، اسید پروپیونیک، مجموع ترکیبی اسید استیک و اسید پروپیونیک و نسبت اسید استیک به اسید پروپیونیک تحت ‌تأثیر سطوح مختلف اختلاف کاتیون - آنیون جیره قرار نگرفتند (0/05 < P). فراسنجه‌های قند خون اختلاف قابل‌توجهی (0/05<P) را در تیمارهای مختلف نشان دادند، به طوریکه گروه کنترل بیشترین میزان سطح قند خون را داشت. در مقابل، در سایر نشانگرهای خون از جمله پتاسیم، منیزیم، کلر، بالانس نیتروژن و فسفات اختلاف معنی‌داری مشاهده نشد (0/05 < P). بیشترین میزان کلسیم و سدیم در گروه کنترل مشاهده شد، و بالاترین سطح کلسترول مربوط به گروه پنجم با بیشترین سطح DCAD بود (0/05< P).
نتیجه‌گیری: به طور کلی، یافته‌ها نشان دادند که دستکاری سطح اختلاف کاتیون - آنیون جیره تأثیر قابل‌توجهی برpH  شکمبه داشت ولی اثرات آماری معنی‌داری بر غلظت اسیدهای چرب فرار و در نتیجه تخمیر شکمبه نداشت. با این حال، گروه کنترل به لحاظ عددی بالاترین سطوح آمونیاک و کل اسیدهای چرب فرار را نشان داد. کاهش مشاهده‌شده در غلظت آمونیاک با افزایش سطح DCAD باعث افزایش اسیدیته شکمبه شد و این امر محیط مطلوبی برای سنتز بیشتر اسیدهای چرب فرار ایجاد می‌کند؛ از این‎ رو، این سطوح در گروه کنترل کمتر هستند. وجود رابطه مستقیم بین مصرف ماده خشک، قابلیت هضم پروتئین خام و قابلیت هضم ماده خشک و افزایش سطح DCAD نشان می‌دهد که بره‌ها در شرایط تنش گرمایی می‌توانند قابلیت هضم ظاهری و عملکرد خود را با افزایش مصرف سطح اختلاف کاتیون - آنیون جیره حفظ کنند. در کل، اکثر پارامترهای مختلف مورد مطالعه و متابولیت‌های بیوشیمیایی خون بره‌ها تغییر معنی‌داری نداشتند و در محدوده نرمال قرار داشتند، که می‌تواند دلیل سازگاری نسبی گوسفندان بومی با شرایط تنش گرمایی باشد. از طرف دیگر، بالا بردن سطح کاتیون- آنیون جیره تا حدودی مشکلات ناشی از تنش گرمایی را مرتفع نمود.

 
متن کامل [PDF 840 kb]   (47 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مدیریت دامپروری و تولید
دریافت: 1403/11/9 | پذیرش: 1404/2/25

فهرست منابع
1. Afsahi, A., Ahmadi-Hamedani, M., & Khodadi, M. (2020). Comparative evaluation of urinary dipstick and pH-meter for cattle urine pH measurement. Heliyon, 6(2). doi: 10.1016/j.heliyon.2020.e03316 [DOI:10.1016/j.heliyon.2020.e03316]
2. Apper-Bossard, E., Faverdin, P., Meschy, F., & Peyraud, J. L. (2010). Effects of dietary cation-anion difference on ruminal metabolism and blood acid-base regulation in dairy cows receiving 2 contrasting levels of concentrate in diets. Journal of Dairy Science, 93(9), 4196-4210. doi: 10.3168/jds.2009-2975. [DOI:10.3168/jds.2009-2975]
3. Babaei, M., Ghoorchi, T., & Toghdory, A. (2023). Impact of replacing different levels of potato waste silage with barley on growth performance, digestibility, rumen and blood parameters of fattening lambs. Research on Animal Production, 14(4), 51-61. doi: 10.61186/rap.14.42.51. [In Persian] [DOI:10.61186/rap.14.42.51]
4. Block, E. (1984). Manipulating dietary anions and cations for prepartum dairy cows to reduce incidence of milk fever. Journal of Dairy Science, 67(12), 2939-2948. doi: 10.3168/jds.S0022-0302(84)81657-4 [DOI:10.3168/jds.S0022-0302(84)81657-4]
5. Bougouin, A., Martin, C., Doreau, M., & Ferlay, A. (2019). Effects of starch-rich or lipid-supplemented diets that induce milk fat depression on rumen biohydrogenation of fatty acids and methanogenesis in lactating dairy cows. Animal, 13(7), 1421-1431. doi.org/10.1017/S1751731118003154. [DOI:10.1017/S1751731118003154]
6. Caixeta, L. S., Weber, W. J., Johnson, D. M., Faser, J., Visser, B. M., & Crooker, B. A. (2020). Effects of anionic supplement source in prepartum negative dietary cation-anion difference diets on serum calcium, feed intake, and lactational performance of multiparous dairy cows. Journal of Dairy Science. 103(5), 4302-4314. doi: 10.3168/jds.2019-16991 [DOI:10.3168/jds.2019-16991]
7. Cardoso, F. C., Kalscheur, K. F., & Drackley, J. K. (2020). Symposium review: Nutrition strategies for improved health, production, and fertility during the transition period. Journal of Dairy Science, 103(6), 5684-5693. doi.org/10.3168/jds.2019-17271 [DOI:10.3168/jds.2019-17271]
8. Chen, X. B., & Gomes, M. (1992). Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives: an overview of the technical details. International Feed Resources Unit. Rowett Research Institute, Bucksburn Aberdeen AB2 9SB, UK, Occasional Publication 1992
9. Collazos, C., Lopera, C., Santos, J. E. P., & Laporta, J. (2018). Effects of the level and duration of maternal diets with negative dietary cation-anion differences prepartum on calf growth, immunity, and mineral and energy metabolism. Journal of Dairy Science, 100(12), 9835-9850. doi: 10.3168/jds.2017-13200 [DOI:10.3168/jds.2017-13200]
10. Cunniff, P., & Washington, D. (1997). Official methods of analysis of AOAC International. Journal of AOAC International, 80(6), 127A. doi.org/10.1093/jaoac/80.6.127A [DOI:10.1093/jaoac/80.6.127A]
11. Diehl, A. L., Bernard, J. K., Tao, S., Smith, T. N., Kirk, D. J., McLean, D. J., & Chapman, J. D. (2018). Effect of varying prepartum dietary cation-anion difference and calcium concentration on postpartum mineral and metabolite status and milk production of multiparous cows. Journal of Dairy Science, 101(11), 9915-9925. doi.org/10.3168/jds.2018-14828 [DOI:10.3168/jds.2018-14828]
12. Doepel, L. & Hayirli, A. (2011). Exclusion of dietary sodium bicarbonate from a wheat-based diet: Effects on milk production and ruminal fermentation. Journal of Dairy Science, 94(1), 370-375. doi.org/10.3168/jds.2010-3488 [DOI:10.3168/jds.2010-3488]
13. Dudareva, N., Pichersky, E., & Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 135(4), 1893-1902. doi.org/10.1104/pp.104.049981 [DOI:10.1104/pp.104.049981]
14. Edwards, L. N., Engle, T. E., Paradis, M. A., Correa, J. A., & Anderson, D. B. (2010). Persistence of blood changes associated with alteration of the dietary electrolyte balance in commercial pigs after feed withdrawal, transportation, and lairage, and the effects on performance and carcass quality. Journal of Animal Science, 88(12), 4068-4077. doi.org/10.2527/jas.2009-2139 [DOI:10.2527/jas.2009-2139]
15. Funk, M. A., Galyean, M. L., & Ross, T. T. (1986). Potassium and lasalocid effects on performance and digestion in lambs. Journal of Animal Science, 63(3), 685-691. doi.org/10.2527/jas1986.633685x [DOI:10.2527/jas1986.633685x]
16. Glosson, K. M., Zhang, X., Bascom, S. S., Rowson, A. D., Wang, Z., & Drackley, J. K. (2020). Negative dietary cation-anion difference and amount of calcium in prepartum diets: Effects on milk production, blood calcium, and health. Journal of Dairy Science, 103(8), 7039-7054. doi.org/10.3168/jds.2019-18068 [DOI:10.3168/jds.2019-18068]
17. Harrison, J., White, R., Kincaid, R., Block, E., Jenkins, T. & St-Pierre, N. (2012). Effectiveness of potassium carbonate sesquihydrate to increase dietary cation-anion difference in early lactation cows. Journal of Dairy Science, 95(7), 3919-3925. doi.org/10.3168/jds.2011-4840 [DOI:10.3168/jds.2011-4840]
18. Hassanien, H. E., Galyean, M. L., Ballou, M. A., Mahmoud, A. M., Abdel‐Raouf, E. M., & Eweedah, N. M. (2022). Effects of altering prepartum and postpartum dietary cation-anion difference on calcium concentrations and blood metabolites of Holstein dairy cows. Animal Science Journal, 93(1), e13715. doi.org/10.1111/asj.13715 [DOI:10.1111/asj.13715]
19. Heer, F., Dobenecker, B. & Kienzle, E. (2017). Effect of cation-anion balance in feed on urine pH in rabbits in comparison with other species. Journal of Animal Physiology and Animal Nutrition, 101(6), 1324-1330. doi.org/10.1111/jpn.12653 [DOI:10.1111/jpn.12653]
20. Iwaniuk, M. E., & Erdman, R. A. (2015). Intake, milk production, ruminal, and feed efficiency responses to dietary cation-anion difference by lactating dairy cows. Journal of Dairy Science, 98(12), 8973-8985. doi.org/10.3168/jds.2015-9949 [DOI:10.3168/jds.2015-9949]
21. Kavanagh, I., Burchill, W., Healy, M. G., Fenton, O., Krol, D. J., & Lanigan, G. J. (2019). Mitigation of ammonia and greenhouse gas emissions from stored cattle slurry using acidifiers and chemical amendments. Journal of Cleaner Production, 237, 117822. doi.org/10.1016/j.jclepro.2019.117822 [DOI:10.1016/j.jclepro.2019.117822]
22. Lean, I. J., Santos, J. E. P., Block, E., & Golder, H. M. (2019). Effects of prepartum dietary cation-anion difference intake on production and health of dairy cows: A meta-analysis. Journal of Dairy Science, 102(3), 2103-2133. doi.org/10.3168/jds.2018-14769 [DOI:10.3168/jds.2018-14769]
23. Lee, C., Morris, D. L., Lefever, K. M., & Dieter, P. A. (2020). Feeding a diet with corn distillers grain with solubles to dairy cows alters manure characteristics and ammonia and hydrogen sulfide emissions from manure. Journal of Dairy Science, 103(3), 2363-2372. doi.org/10.3168/jds.2019-17524 [DOI:10.3168/jds.2019-17524]
24. Lopera, C., Zimpel, R., Vieira-Neto, A., Lopes, F. R., Ortiz, W., Poindexter, M., ... & Santos, J. E. P. (2018). Effects of level of dietary cation-anion difference and duration of prepartum feeding on performance and metabolism of dairy cows. Journal of Dairy Science, 101(9), 7907-7929. doi.org/10.3168/jds.2018-14580 [DOI:10.3168/jds.2018-14580]
25. Mallaki, M., Norouzian, M. A., & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary & Animal Sciences. 39(1), 75-80. doi: 10.3906/vet-1405-79 [DOI:10.3906/vet-1405-79]
26. Martinez, N., Rodney, R. M., Block, E., Hernandez, L. L., Nelson, C. D., Lean, I. J., & Santos, J. E. P. (2018). Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Lactation performance and energy metabolism. Journal of Dairy Science, 101(3), 2544-2562. doi.org/10.3168/jds.2017-13739 [DOI:10.3168/jds.2017-13739]
27. McDonald, P., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., Sinclair, L.A., & Wilkinson, R. G. (2010). Animal nutrition. 7th ed. Longman Scientific and Technical, New York, USA. 692 pp.
28. Mongin, P. (1981). Recent advances in dietary anion-cation balance: applications in poultry. Proceedings of the Nutrition Society. 40(3), 285-294. doi.org/10.1079/PNS19810045 [DOI:10.1079/PNS19810045]
29. National Research Council. (2001). Marine Environmental Quality: Suggested Research Programs for Understanding Man's Effect on the Oceans.
30. Nguyen, T., Chanpongsang, S., Chaiyabutr, N., & Thammacharoen, S. (2020). Effects of dietary cation and anion difference on eating, ruminal function and plasma leptin in goats under tropical condition. Asian-Australasian Journal of Animal Sciences, 33(6), 941. doi: 10.5713/ajas.19.0288 [DOI:10.5713/ajas.19.0288]
31. Nørgaard, J. V., Højberg, O., Sørensen, K. U., Eriksen, J., Medina, J. M. S. & Poulsen, H. D. (2014). The effect of long-term acidifying feeding on digesta organic acids, mineral balance, and bone mineralization in growing pigs. Animal Feed Science and Technology, 195, 58-66. doi.org/10.1016/j.anifeedsci.2014.05.010 [DOI:10.1016/j.anifeedsci.2014.05.010]
32. Rajeerad, A., Ghorbani, G. R., Khorvash, M., Sadeghi‐Sefidmazgi, A., Mahdavi, A. H., & Wilkens, M. R. (2021). Low potassium diets with different levels of calcium in comparison with different anionic diets fed to prepartum dairy cows: Effects on sorting behaviour, total tract digestibility, energy metabolism, oxidative status and hormonal response. Journal of Animal Physiology and Animal Nutrition, 105(1), 14-25. doi.org/10.1111/jpn.13438 [DOI:10.1111/jpn.13438]
33. Riond, J. L. (2001). Animal nutrition and acid-base balance. European Journal of Nutrition, 40, 245-254. doi.org/10.1007/s394-001-8352-2 [DOI:10.1007/s394-001-8352-2]
34. Rodney, R. M., Martinez, N. P., Celi, P., Block, E., Thomson, P. C., Wijffels, G., ... & Lean, I. J. (2018). Associations between bone and energy metabolism in cows fed diets differing in level of dietary cation-anion difference and supplemented with cholecalciferol or calcidiol. Journal of Dairy Science, 101(7), 6581-6601. doi.org/10.3168/jds.2017-14033 [DOI:10.3168/jds.2017-14033]
35. Rodney, R. M., Martinez, N., Block, E., Hernandez, L. L., Celi, P., Nelson, C. D., ... & Lean, I. J. (2018). Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Vitamin D, mineral, and bone metabolism. Journal of Dairy Science, 101(3), 2519-2543. doi.org/10.3168/jds.2017-13737 [DOI:10.3168/jds.2017-13737]
36. Samarin, A. A., Norouzian, M. A., & Afzalzadeh, A. (2022). Effect of trace mineral source on biochemical and hematological parameters, digestibility, and performance in growing lambs. Tropical Animal Health and Production, 54(1), 40. doi.org/10.1007/s11250-021-03042-1 [DOI:10.1007/s11250-021-03042-1]
37. Santos, J. E. P., Lean, I. J., Golder, H., & Block, E. (2019). Meta-analysis of the effects of prepartum dietary cation-anion difference on performance and health of dairy cows. Journal of Dairy Science. 102(3), 2134-2154. doi.org/10.3168/jds.2018-14628 [DOI:10.3168/jds.2018-14628]
38. Shahzad, M. A., & Sarwar, M. (2008). Influence of altering dietary cation anion difference on milk yield and its composition by early lactating Nili Ravi buffaloes in summer. Livestock Science. 113(2-3), 133-143. doi.org/10.1016/j.livsci.2007.03.002 [DOI:10.1016/j.livsci.2007.03.002]
39. Spears, J. W., Schlegel, P., Seal, M. C., & Lloyd, K. E. (2004). Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livestock Production Science, 90(2-3), 211-217. doi.org/10.1016/j.livprodsci.2004.05.001 [DOI:10.1016/j.livprodsci.2004.05.001]
40. Thammacharoen, S., Chanpongsang, S., & Chaiyabutr, N. (2001). Effects of monensin administation on mammary function in late lactating crossbred Holstein cattle. Asian-Australasian Journal of Animal Sciences, 14(12), 1712-1718. doi.org/10.5713/ajas.2001.1712 [DOI:10.5713/ajas.2001.1712]
41. Thanh, T. N., Van, P. D., Cong, T. D., Le Minh, T., & Vu, Q. H. N. (2020). Assessment of testis histopathological changes and spermatogenesis in male mice exposed to chronic scrotal heat stress. Journal of Animal Behaviour and Biometeorology, 8(3), 174-180. doi.org/10.31893/jabb.20023 [DOI:10.31893/jabb.20023]
42. Tucker, W. B., Harrison, G. A., & Hemken, R. W. (1988). Influence of dietary cation-anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. Journal of Dairy Science, 71(2), 346-354. doi.org/10.3168/jds.S0022-0302(88)79563-6 [DOI:10.3168/jds.S0022-0302(88)79563-6]
43. West, J. W., Coppock, C. E., Nave, D. H., Labore, J. M., Greene, L. W., & Odom, T. W. (1987). Effects of potassium carbonate and sodium bicarbonate on rumen function in lactating Holstein cows. Journal of Dairy Science, 70(1), 81-90. doi.org/10.3168/jds.S0022-0302(87)79982-2 [DOI:10.3168/jds.S0022-0302(87)79982-2]
44. West, J. W., Mullinix, B. G. & Sandifer, T. G. (1991). Changing dietary electrolyte balance for dairy cows in cool and hot environments. Journal of Dairy Science, 74(5), 1662-1674. doi.org/10.3168/jds.S0022-0302(91)78329-X [DOI:10.3168/jds.S0022-0302(91)78329-X]
45. Yang, K., Tian, X., Ma, Z., & Wu, W. (2021). Feeding a negative dietary cation-anion difference to female goats is feasible, as indicated by the non-deleterious effect on rumen fermentation and rumen microbial population and increased plasma calcium level. Animals, 11(3), 664. doi.org/10.3390/ani11030664 [DOI:10.3390/ani11030664]
46. Yalchi, T. (2023). The effect of oscillating dietary protein concentration on growth performance in fattening male lambs. Research on Animal Production, 14(1), 48-55. 10.61186/rap.14.39.48 [In Persian] [DOI:10.61186/rap.14.39.48]
47. Zhang, X., Glosson, K. M., Bascom, S. S., Rowson, A. D., Wang, Z., & Drackley, J. K. (2022). Metabolic and blood acid-base responses to prepartum dietary cation-anion difference and calcium content in transition dairy cows. Journal of Dairy Science. 105(2), 1199-1210. doi.org/10.3168/jds.2021-21191 [DOI:10.3168/jds.2021-21191]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb