1. Adesina, K. (2012). Effect of breed on the composition of cow milk under traditional management practices in Ado-Ekiti, Nigeria. Journal of Applied Science and Environmental Management, 16(1), 55-59.
2. Ahsani, M. R., Mohammadabadi, M., Buchkovska, V. and Ievstafiieva, Y. M. (2022). Association of Stearoyl‐CoA Desaturase Expression with Cattle Milk Characteristics. Iranian Journal of Applied Animal Science, 12(2), 271-279.
3. Ali, G. E., Ibrahim, M. A. & Zaki, S. M. (2019). Association assessment of single nucleotide polymorphism in Forebrain Embryonic Zinc Finger-Like (FEZL) gene with mastitis susceptibility in Holstein cattle (Bos Taurus). Large Animal Review, 25, 163-171.
4. Alinaghizadeh, R., Mohammad Abadi, M. R., & Moradnasab Badrabadi, S. (2007). Kappa-casein gene study in Iranian Sistani cattle breed (Bos indicus) using PCR-RFLP. Pakistan Journal of Biological Sciences, 10(23), 4291-4294. [
DOI:10.3923/pjbs.2007.4291.4294]
5. Asghari, E. B., Dashab, G. R., Banabazi, M. H., & Rokouei, M. (2021). Analysis of genetic differences in genes associated with immune response among purebred and crossbreed Sistani and Montebeliarde cow population using RNA-Seq data. Research on Animal Production, 12(31), 134-145. DOI:10.52547/rap.12.31.134 [In Persian] [
DOI:10.52547/rap.12.31.134]
6. Ateya, A., Ibrahim, S., & Al-Sharif, M. (2022). Single nucleotide polymorphisms, gene expression and economic evaluation of parameters associated with mastitis susceptibility in European cattle breeds. Veterinary Science, 9(6), 294. DOI: 10.3390/vetsci9060294 [
DOI:10.3390/vetsci9060294]
7. Badakhshan, Y., & Mohammadabadi, M. R. (2015). Thermoregulatory mechanisms of jersey adult cattle and calves based on different body sites temperature. Iranian Journal of Applied Animal Science, 5(4), 793-798.
8. Barazandeh, A., Mohammadabadi, M. R., & Ghaderi-Zefrehei, M. (2016). Predicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm. Iranian Journal of Applied Animal Science, 6(3), 571-579.
9. Birjandi, M. R. (1997). Investigating the status of breeding and determining milk production capacity and milking characteristics of Sistani cattle in Sistan region. Abstract Research projects of the Ministry of Jihad (Volume II), pp. 368-370. [In Persian]
10. Bordbar, F., Mohammadabadi, M., Jensen, J., Xu, L., Li, J., & Zhang, L. (2022). Identification of candidate genes regulating carcass depth and hind leg circumference in simmental beef cattle using Illumina Bovine Beadchip and next-generation sequencing. Animals, 12 (9), 1103. [
DOI:10.3390/ani12091103]
11. Carlén, E., Strandberg, E., & Roth, A. (2004). Genetic parameters for clinical mastitis, somatic cell score, and production in the first three lactations of Swedish Holstein cows. Journal Dairy Science, 87, 3062- 3070. [
DOI:10.3168/jds.S0022-0302(04)73439-6]
12. Chegini, A., Hossein-Zadeh, N. G., Hosseini-Moghadam, H., & Shadparvar, A. A. (2016). Estimation of genetic and environmental relationships between milk yield and different measures of mastitis and hyperkeratosis in Holstein cows. Acta Scientiaraum, 38, 191-196. [
DOI:10.4025/actascianimsci.v38i2.29207]
13. Cole, J. B., Makanjuola, B. O., Rochus, C. M., van Staaveren, N., & Baes, C. (2023). The effects of breeding and selection on lactation in dairy cattle. Animal Frontiers, 13(3), 62-70.
https://doi.org/10.1093/af/vfad044 [
DOI:10.1093/af/vfad044.]
14. Ehsaninia, J., Moradi, M., Haffezian, S. S. H., & Sayad, M. B. (2011). Crossbreeding effects on milk fatyields performance of Iran population local cattle. Animal Sciences Journal, 91, 27-33. [In Persian]
15. Ghada, G. G., & Abdalla, E. A. (2019). Physiological study on nano particle to improve immune response and performance of broiler chicken. Egyptian Journal of Nutrition and Feeds, 22(3), 635-646. Doi: 10.21608/ejnf.2019.79502. [
DOI:10.21608/ejnf.2019.79502]
16. Gorbani, A., & Behpai, M. (2020). Association of GDF9 gene polymorphism with sperm quality and quantity traits in Iranian Holstein bulls. Research Animal Production, 11(27), 95-100. Doi: 10.29252/rap.11.27.95. [In Persian] [
DOI:10.29252/rap.11.27.95]
17. Heyen, D. W., Weller, J. I., Ron, M., Band, M., Beever, J. E., Feldmesser, E., Da, Y., Wiggans, G. R., VanRaden, P. M., & Lewin, H. A. (1999). A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiological Genomics, 1, 165-175. [
DOI:10.1152/physiolgenomics.1999.1.3.165]
18. DOI: 10.1152/physiolgenomics.1999.1.3.165. [
DOI:10.1152/physiolgenomics.1999.1.3.165]
19. Hirata, T., Suda, Y., Nakao, K., Narimatsu, M., Hirano, T., & Hibi, M. (2004). Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons. Develop-Mental Dynamics, 230, 546-556. DOI: 10.1002/dvdy.20068. [
DOI:10.1002/dvdy.20068]
20. Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome Research, 9, 868-877. DOI: 10.1101/gr.9.9.868. [
DOI:10.1101/gr.9.9.868]
21. Jafari Ahmadabadi, S. A. A., Askari-Hemmat, H., Mohammadabadi. M., Asadi Fouzi. M., & Mansouri, M. (2023). The effect of Cannabis seed on DLK1 gene expression in heart tissue of Kermani lambs. Agricultural Biotechnology Journal, 15(1), 217-234.
22. Kamalzadeh, A., Rajabbaigy, M., & Kiasat, A. (2008). Livestock production systems and trends in livestock industry in Iran. Journal of Agriculture and Social Sciences, 4, 183-188.
23. Kebede, E. (2018). Effect of cattle breeds on milk composition in the same management conditions. Ethiopia Journal of Agricultural Science, 28(2), 53-63.
24. Librado, P., & Rozas, J. (2009). DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Journal of Bioinformatics, 25, 1451-1452. DOI: 10.1093/bioinformatics/btp187. [
DOI:10.1093/bioinformatics/btp187]
25. Lopez, A., & Bonasora, M. G. (2017). Phylogeography, genetic diversity and population structure in a Patagonian endemic plant. AoB Plants, 16(4), 275. DOI: 10.1093/aobpla/plx017. [
DOI:10.1093/aobpla/plx017]
26. Malik, T. A., Mohini, M., Mir, S. H., Ganaie, B. A., Singh, D., Varun, T. K., Howal, S., & Thakur, S. (2018). Somatic cells in relation to udder health and milk quality-a review. Journal Animal Health Production, 6(1), 18-26. DOI: 10.17582/journal.jahp/2018/6.1.18.26. [
DOI:10.17582/journal.jahp/2018/6.1.18.26]
27. Matsuo-Takasaki, M., Lim, J. H., Beanan, M. J., Sato, S. M., & Sargent, T. D. (2000). Cloning and expression of a novel zinc finger gene, Fez, transcribed in the forebrain of Xenopus and mouse embryos. Mechanisms of Development, 93, 201-204.
https://doi.org/10.1016/S0925-4773(00)00264-1 [
DOI:10.1016/S0925-4773(00)00264-1.]
28. Mehmarian, M. (2006). Cattle and buffalo fattening. First Edition, Research and Construction Publications, Mashhad, 113-123. [In Persian]
29. Mohammadabadi, M., Golkar, A., & Askari Hesni, M. (2023). The effect of fennel (Foeniculum vulgare) on insulin-like growth factor 1 gene expression in the rumen tissue of Kermani sheep. Agricultural Biotechnology Journal, 15(4), 239-256.
30. Naderi Y. (2004). The effect of maternal factors on growth traits in Moghani breed sheep, master's thesis. Higher Education Complex of Agricultural Sciences and Agricultural Natural Resources, Sari University of Mazandaran, pp. 98. [In Persian]
31. Nafez, M., Zerehdaran, S., Hassani, S., & Samiei, R. (2012). Genetic Evaluation of Productive and Reproductive Traits of Holstein Dairy Cows in the North of Iran. Iranian Journal of Animal Science Research, 4(1),69-77. DOI: 10.22067/ijasr.v4i1.13914. [In Persian]
32. Nejad, F. M., Mohammadabadi, M., Roudbari, Z., Gorji, A. E., & Sadkowski, T. (2024). Network visualization of genes involved in skeletal muscle myogenesis in livestock animals. BMC Genomics, 25 (1), 294. [
DOI:10.1186/s12864-024-10196-3]
33. Norouzy, A., Nassiry, M. R., Shahrody, F. E., Javadmanesh, A., Abadi, M. R. M., & Sulimova, G. E. (2005). Identification of bovine leucocyte adhesion deficiency (BLAD) carriers in Holstein and Brown Swiss AI bulls in Iran. Russian Journal of Genetics, 41(12), 1409-1413. [
DOI:10.1007/s11177-006-0014-7]
34. Ogorevc, J., Prpar, S., & Dovc, P. (2000). Establishment and characterization of a caprine mammary epithelial cell line. In vitro Cell Development Biology Science, 36(1), 26-37. DOI: 10.1290/1071-2690(2000)036<0026: EACOAC>2.0.CO;2.
https://doi.org/10.1290/1071-2690(2000)036<0026:EACOAC>2.3.CO;2 [
DOI:10.1290/1071-2690(2000)0362.3.CO;2]
35. Petersen, G., & Seberg, O. (2003). Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Systematic Botany, 28, 293-306. DOI: 10.1043/0363-6445-28.2.293.
36. Razavi, M., Vatankhah, M., Mirzaei, H., & Rokouei, M. (2006). Estimation of genetic trend of productive traits in Holstein cows of Central Province. Research and Construction, 77, 63-55. [In Persian]
37. Sanchez, M. P., Govignon-Gion, A., Ferrand, M., Gelé, M., Pourchet, D., Amigues, Y., Fritz, S., Boussaha, M., Capitan, A., & Rocha, D. (2016). Whole-genome scan to detect quantitative trait loci associated with milk protein composition in 3 French dairy cattle breeds. Journal of Dairy Science, 99, 8203-8215.
https://doi.org/10.3168/jds.2016-11437 [
DOI:10.3168/jds.2016-11437.]
38. Sanchez, M. P., Govignon-Gion, A., Croiseau, P., Fritz, S., Hozé, C., Miranda, G., Martin, P., Barbat-Leterrier, A., Letaïef, R., & Rocha, D. (2017). Within-breed and multi-breed GWAS on imputed whole-genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genetic Selection Evolution, 49, 68. DOI: 10.1186/s12711-017-0344-z. [
DOI:10.1186/s12711-017-0344-z]
39. Shokri, S., Khezri, A., Mohammadabadi, M., & Kheyrodin, H. (2023). The expression of MYH7 gene in femur, humeral muscle and back muscle tissues of fattening lambs of the Kermani breed. Agricultural Biotechnology Journal, 15(2), 217-236.
40. Somasundaram, R. K., Gupta, I. D., Raja, K. N., Periasamy, K., & Ramasamy, S. (2020). Polymorphism of Bovine Forebrain Embryonic Zinc Finger Like (FEZL) gene associated with resistance to mastitis in Indian cattle. International Journal of Livestock Research, 10(8), 144-149.
https://doi.org/10.5455/ijlr.20200425120435 [
DOI:10.5455/ijlr.20200425120435.]
41. Sugimoto, M., & Sugimoto, Y. (2012). Variant in the 5'untranslated region of insulin-like growth factor 1 receptor is associated with susceptibility to mastitis in cattle. G3, 2, 1077-1084. DOI: 10.1534/g3.112.003095. [
DOI:10.1534/g3.112.003095]
42. Sugimoto, M., Fujikawa, A., Womack, J. E., & Sugimoto, Y. (2006). Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance. Proceedings of National Academy of Sciences, 103(17), 6454-6459. DOI: 10.1073/pnas.0601015103. [
DOI:10.1073/pnas.0601015103]
43. Sugimoto, M., Itoh, T., Gotoh, Y., Kawahara, T., Moriya, H., Uchimura, Y., & Sugimoto, Y. (2011). Enhanced clinical mastitis resistance in Holsteins with a FEZL p.Gly105(12/13) polymorphism. Journal of Dairy Science, 94, 2103-2107.
https://doi.org/10.3168/jds.2010-3362 [
DOI:10.3168/jds.2010-3362.]
44. Sugimoto, M., Uchiza, M., & Kuniyuki, M. (2013). Effects of a Forebrain embryonic zinc finger-like p.Gly105 (12:13) polymorphism on mastitis resistance: an embryo-transfer study. Molecular Biology and Genetic Engineering, 1(1), 2053-5767. DOI:10.7243/2053-5767-1-1. [
DOI:10.7243/2053-5767-1-1]
45. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10, 512-526. DOI: 10.1093/oxfordjournals.molbev.a040023. [
DOI:10.1093/oxfordjournals.molbev.a040023]
46. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. [
DOI:10.1093/molbev/mst197]
47. Urioste, J. I., Franzén, J., Windig, J. J., & Strandberg, E. (2012). Genetic relationships among mastitis and alternative somatic cell count traits in the first 3 lactations of Swedish Holsteins. Journal of Dairy Science, 95(6), 3428-3434. DOI: 10.3168/jds.2011-4739. [
DOI:10.3168/jds.2011-4739]
48. Wall, R. J., Powell, A. M., Paape, M. J., Kerr, D. E., Bannerman, D. D., Pursel, V. G., Wells, K. D., Talbot, N., & Hawk, H. W. (2005). Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nature Biotechnology, 23, 445-451. DOI: 10.1038/nbt1078. [
DOI:10.1038/nbt1078]
49. Wu, J. Y., Feng, L., Park, H. T., Havlioglu, N., Wen, L., Tang, H., Bacon, K. B., Jiang, Z., Zhang, X. C., & Rao, Y. (2001). The neuronal repellent slit, a molecule known to guide axon projection and neuronal migration, inhibits leukocyte chemotaxis induced by chemotactic factors. Nature, 410, 948-952. DOI: 10.1038/35073616. [
DOI:10.1038/35073616]
50. Yang, T. X., Li, H., Wang, F., Liu, X. L., & Li, Q. Y. (2013). Effect of cattle breeds on milk composition and technological characteristics in China. Asian-Australasia Journal Animal Science, 26(6), 896-904. DOI: 10.5713/ajas.2012.12677. [
DOI:10.5713/ajas.2012.12677]
51. Zhang, C., Fan, X., Yu, H. Q., Zhang, H. Q., Wang, X. L., & Zhou, Y. H., (2009). Phylogenetic analysis of questionable tetraploid species in Roegneria and Pseudoroegneria (Poaceae: Triticeae) inferred from a gene encoding plastid acety1-CoA carboxylase. Biochemical Systematics and Ecology, 37, 412-420.
https://doi.org/10.1016/j.bse.2009.04.011 [
DOI:10.1016/j.bse.2009.04.011.]