دوره 16، شماره 3 - ( پاییز 1404 )                   جلد 16 شماره 3 صفحات 69-54 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gazani S, Rezaei M, Kazemifard M. (2025). The Effect of Adding Emulsifier and Multienzyme in Diets Containing Rapeseed Meal with Different Energy Levels on Performance, Carcass Characteristics, Nutrient Digestibility, and Blood Parameter Concentrations in Broiler Chickens. Res Anim Prod. 16(3), 54-69. doi:10.61882/rap.2025.1476
URL: http://rap.sanru.ac.ir/article-1-1476-fa.html
گزانی سپیده، رضائی منصور، کاظمی فرد محمد.(1404). اثر افزودن امولسی ‎فایر و مولتی‌آنزیم در جیره‌های حاوی کنجاله کلزا با سطوح متفاوت انرژی بر عملکرد، ویژگی‌های لاشه، قابلیت هضم مواد مغذی و برخی فراسنجه‌های خونی در جوجه‌های گوشتی پژوهشهاي توليدات دامي 16 (3) :69-54 10.61882/rap.2025.1476

URL: http://rap.sanru.ac.ir/article-1-1476-fa.html


1- گروه علوم دامی، دانشکده علوم دامی و شیلات، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
چکیده:   (1013 مشاهده)
چکیده مبسوط
مقدمه و هدف: به ‎دلیل بالابودن قیمت منابع پروتئینی، پرورش‌دهندگان به دنبال منابع جایگزین برای مکمل‎ های پروتئینی هستند که با هزینه کمتری در دسترس باشند. تأمین انرژی جیره نیز هزینه بالایی دارد که قسمت عمده آن در جیره توسط منابع مختلف چربی و روغن تامین می‌شود. برخی از مواد افزودنی‌ها، مانند مولتی‌آنزیم‌ها و امولسیفایرها، می‌توانند در دسترس بودن و قابلیت هضم مواد مغذی به‌ویژه پروتئین‌ها و چربی‌ها را افزایش دهند. از این ‎رو، این پژوهش با هدف بررسی اثر افزودن مولتی ‎آنزیم و امولسیفایر در جیره‌های حاوی کنجاله کلزا با سطوح متفاوت انرژی بر عملکرد، ویژگی‎ های لاشه، فراسنجه‌های خونی، و قابلیت هضم مواد مغذی در جوجه‌های گوشتی انجام شد. 
مواد و روش‌ها: تعداد 800 قطعه جوجه گوشتی نر یک‎روزه سویه راس 308 در قالب طرح کاملاً تصادفی با آرایش فاکتوریل 2*2*2 شامل دو سطح انرژی (توصیه‎ شده و صد کیلوکالری کمتر از مقدار توصیه شده)، دو سطح مولتی ‎آنزیم و موزایم (صفر و 0/01 درصد جیره) و دو سطح امولسیفایر لیزوفسفولیپید (صفر و 0/05 درصد جیره) در 40 واحد آزمایشی با پنج تکرار و 20 پرنده در هر تکرار توزیع و به‎ مدت 42 روز در سه دوره آغازین (10-1 روزگی)، رشد (24-11 روزگی) و پایانی (42-25 روزگی) پرورش داده شدند.
یافته‌ها: افزودن آنزیم و امولسیفایر به جیره‌های با سطح بالای انرژی در مقایسه با جیره‌های با سطح پایین انرژی سبب بهبود افزایش وزن در دوره رشد شد. در دوره پایانی، تفاوتی در افزایش وزن با استفاده از جیره‌های با سطح پایین انرژی و استفاده از آنزیم و امولسیفایر در مقایسه با جیره‌های با سطح توصیه شده انرژی بدون افزودن آنزیم و امولسیفایر و یا با استفاده از آنزیم و یا استفاده از امولسیفایر و یا هر دو افزودنی ایجاد نشد. در کل دوره، استفاده از جیره‌های با سطوح پایین انرژی با استفاده از آنزیم و امولسیفایر تفاوتی در افزایش وزن در مقایسه با جیره‌های با سطح توصیه ­شده انرژی بدون آنزیم و امولسیفایر نشان نداد. اثرات متقابل سه جانبه سطح انرژی، آنزیم و امولسیفایر بر مصرف خوراک در هیچ یک از دوره‌های پرورش معنی‌دار نبود. در دوره آغازین، استفاده از آنزیم و امولسیفایر در جیره‌های با سطح توصیه شده انرژی سبب بهبود ضریب تبدیل خوراک نسبت به جیره‌های با سطوح پایین انرژی، بدون استفاده از آنزیم و امولسیفایر شد. در دوره رشد، ضریب تبدیل خوراک با استفاده از جیره‌های با سطح انرژی توصیه ‎شده و با استفاده از آنزیم و امولسیفایر نسبت به جیره‌های با سطح پایین انرژی بدون افزودنی و یا با استفاده از آنزیم و یا امولسیفایر و یا هر دو افزودنی بهبود یافت. در دوره پایانی، تفاوتی درضریب تبدیل خوراک با استفاده از جیره‌های با سطوح پایین انرژی، حاوی آنزیم و امولسیفایر در مقایسه با جیره‌های با سطح توصیه شده انرژی بدون افزودن آنزیم و امولسیفایر و یا با استفاده از آنزیم و یا امولسیفایر و یا هر دو افزودنی مشاهده نشد. در کل دوره، ضریب تبدیل خوراک در جیره‌های با سطح پایین انرژی و استفاده از آنزیم و امولسیفایر با ضریب تبدیل خوراک جیره‌های با انرژی توصیه شده بدون افزودنی و یا با استفاده از آنزیم و یا امولسیفایر تفاوت معنی‌داری را نشان نداد. بیشترین درصد لاشه مربوط به استفاده از جیره‌های با سطوح توصیه شده انرژی و حاوی آنزیم و امولسیفایر بود. بیشترین درصد سینه مربوط به جیره‌های با سطح انرژی توصیه شده و استفاده از آنزیم بود. بیشترین درصد چربی محوطه بطنی و بیشترین درصد سنگدان مربوط به جیره‌های شاهد با سطح انرژی توصیه شده بودند. همچنین، بیشترین درصدهای کبد و پانکراس به جیره‌های با سطوح انرژی توصیه‎ شده و حاوی امولسیفایر تعلق داشت. بیشترین غلظت ‎های تری‌گلیسرید و VLDL خون در جیره‌های با سطح توصیه شده انرژی بدون استفاده از آنزیم و امولسیفایر یافت شد. استفاده از امولسیفایر در جیره‌های با سطوح توصیه شده انرژی موجب کاهش غلظت تری‌گلیسرید و VLDL نسبت به جیره‌های با سطح توصیه شده انرژی بدون استفاده از آنزیم و امولسیفایر و یا جیره‌های با سطح توصیه شده انرژی با استفاده از آنزیم شد. تفاوتی در غلظت ‎های تری‌گلیسرید و VLDL خون با افزودن آنزیم و امولسیفایر در جیره‌های با سطوح پایین انرژی مشاهده نشد. افزودن امولسیفایر به جیره‌های با سطح پایین انرژی، غلظت­ های تری گلیسرید و VLDL خون کمتری را نسبت به جیره‌های با سطح توصیه شده انرژی بدون استفاده از آنزیم و امولسیفایر و یا با استفاده از آنزیم یا هر دو افزودنی نشان داد. جیره‌های حاوی آنزیم، قابلیت هضم ماده آلی، پروتئین خام و چربی خام بهتری را نشان دادند. استفاده از امولسیفایر در جیره قابلیت هضم پروتئین و چربی را بهبود بخشید.
نتیجه‌گیری: نتایج این آزمایش نشان می ‎دهند که استفاده از مولتی‌آنزیم وموزایم و امولسیفایر در جیره‌های حاوی کنجاله کلزا با سطح انرژی پایین‌تر از میزان توصیه شده (100 کیلوکالری کمتر از مقدار توصیه شده) در دوره پایانی و کل دوره می‌تواند در بهبود وزن و ضریب تبدیل خوراک و قابلیت هضم پروتئین خام و چربی خام موثر باشد. با کاهش 100 کیلوکالری انرژی از مقدار انرژی توصیه ‎شده در دوره‌ پایانی و رشد، حدود 2 درصد از مقدار روغن جیره کاسته شد که این امر در کاهش هزینه جیره موثر بود.

 
متن کامل [PDF 2800 kb]   (46 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه طیور
دریافت: 1403/11/27 | پذیرش: 1404/3/2

فهرست منابع
1. Attia, G. A., Metwally, A. E., Beheiry, R. R., & Farahat, M. H. (2021). Effect of a multicarbohydrase supplementation to diets varying in metabolisable energy level on the performance, carcase traits, caecal microbiota, intestinal morphology, and nutrient digestibility in broiler chickens. Italian Journal of Animal Science, 20(1), 215-225.‌ 10.1080/1828051X.2021.1875337 [DOI:10.1080/1828051X.2021.1875337]
2. Bontempo, V., Comi, M., Jiang, X. R., Rebucci, R., Caprarulo, V., Giromini, C., & Baldi, A. (2018). Evaluation of a synthetic emulsifier product supplementation on broiler chicks. Journal of Animal Feed Science and Technology, 240, 157-164. 10.1016/j.anifeedsci.2018.04.010 [DOI:10.1016/j.anifeedsci.2018.04.010]
3. Boontiam, W., Jung, B., & Kim, Y. Y. (2017). Effects of lysophospholipid supplementation to lower nutrient diets on growth performance, intestinal morphology, and blood metabolites in broiler chickens. Poultry Science, 96(3), 593-601.10.3382/ps/pew269 [DOI:10.3382/ps/pew269]
4. Boontiam, W., Hyun, Y. K., Jung, B., & Kim, Y. Y. (2019). Effects of lysophospholipid supplementation to reduced energy, crude protein, and amino acid diets on growth performance, nutrient digestibility, and blood profiles in broiler chickens. Poultry Science, 98(12), 6693-6701.10.3382/ps/pex005 [DOI:10.3382/ps/pex005]
5. Chesson, A. (2001). Non-starch polysaccharide degrading enzymes in poultry diets: influence of ingredients on the selection of activities. World's Poultry Science Journal, 57(3), 251-263.‌ 10.1079/WPS20010018 [DOI:10.1079/WPS20010018]
6. Cho, J. H., Zhao, P., & Kim, I. H. (2012). Effects of emulsifier and multi-enzyme in different energydensitydiet on growth performance, blood profiles, and relative organ weight in broiler chickens. Journal of Agricultural Science, 4(10), 161- 168.10.5539/jas. v4n10p161 [DOI:10.5539/jas.v4n10p161]
7. Choct, M., & Annison, G. (1992). Anti‐nutritive effect of wheat pentosans in broiler chickens: Roles of viscosity and gut microflora. British Poultry Science, 33(4), 821-834.‌ 10.1080/00071669208417524 [DOI:10.1080/00071669208417524]
8. Cozannet, P., Kidd, M. T., Neto, R. M., & Geraert, P. A. (2017). Next-generation non-starch polysaccharide-degrading, multi-carbohydrase complex rich in xylanase and arabinofuranosidase to enhance broiler feed digestibility. Poultry Science, 96(8), 2743-2750. 10.3382/ps/pex084 [DOI:10.3382/ps/pex084]
9. Danicke, S., Vahjen, W., Simon, O., &Jeroch, H. (1999). Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium. on transit time of feed, and on nutrient digestibility. Poultry Science, 78(9), 1292-1299.‌10.1093/ps/78.9.1292 [DOI:10.1093/ps/78.9.1292]
10. Fenton, T. W., & Fenton, M. (1979). An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science, 59(3), 631-634. 10.4141/cjas79-081 [DOI:10.4141/cjas79-081]
11. Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (1972). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry, 18(6), 499-502. 10.1093/clinchem/18.6.499 [DOI:10.1093/clinchem/18.6.499]
12. Ge, X. K., Wang, A. A., Ying, Z. X., Zhang, L. G., Su, W. P., Cheng, K& Wang, T. (2019). Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poultry Science, 98(2), 887-895. 10.3382/ps/pey434‌‌ [DOI:10.3382/ps/pey434]
13. Husak, R. L., Sebranek, J. G., & Bregendahl, K. (2008). A survey of commercially available broilers marketed as organic, free-range, and conventional broilers for cooked meat yields, meat composition, and relative value. Poultry Science, 87(11), 2367-2376.10.3382/ps.2007-00294 [DOI:10.3382/ps.2007-00294]
14. Jankowski, J., Lecewicz, A., Zdunczyk, Z., Juskiewicz, J., & Slominski, B. A. (2011). The effect of partial replacement of soyabean meal with sunflower meal on ileal adaptation, nutrient utilisation and growth performance of young turkeys. British Poultry Science, 52(4), 456-465 10.1080/00071668.2011.602664 [DOI:10.1080/00071668.2011.602664]
15. ‌Jones, D. E., Feng, H., Mintz, K. J., &Augsten, R. A. (1999). Parameters affecting the thermal behaviour of emulsion explosives. Thermochimica Acta, 331(1), 37-44.10.1016/S0040-6031(98)00660-1 [DOI:10.1016/S0040-6031(98)00660-1]
16. Khajali, F., & Slominski, B. A. (2012). Factors that affect the nutritive value of canola meal for poultry. Poultry Science, 91(10), 2564-2575.‌ 10.3382/ps.2012-02332 [DOI:10.3382/ps.2012-02332]
17. Khonyoung, D., Yamauchi, K., & Suzuki, K. (2015). Influence of dietary fat sources and lysolecithin on growth performance, visceral organ size, and histological intestinal alteration in broiler chickens. Livestock Science, 176, 111-120.‌10.1016/j.livsci.2015.03.011 [DOI:10.1016/j.livsci.2015.03.011]
18. Ko, H., Wang, J., Chiu, J. W. C., & Kim, W. K. (2023). Effects of metabolizable energy and emulsifier supplementation on growth performance, nutrient digestibility, body composition, and carcass yield in broilers. Poultry Science, 102(4), 102509.10.1016/j.psj.2023.102509‌ [DOI:10.1016/j.psj.2023.102509]
19. Liu, W. C., & Kim, I. H. (2017). Effects of dietary xylanase supplementation on performance and functional digestive parameters in broilers fed wheat-based diets. Poultry Science, 96(3), 566-573. 10.3382/ps/pew258 [DOI:10.3382/ps/pew258]
20. Liu, X., Yoon, S. B., & Kim, I. H. (2020). Growth performance, nutrient digestibility, blood profiles, excreta microbial counts, meat quality and organ weight on broilers fed with de-oiled lecithin emulsifier. Animals, 10(3), 478.‌10.3390/ani10030478 [DOI:10.3390/ani10030478]
21. Luo, N., Shu, J., Yuan, X., Jin, Y., Cui, H., Zhao, G., & Wen, J. (2022). Differential regulation of intramuscular fat and abdominal fat deposition in chickens. BMC Genomics, 23(1), 308.‌ 10.1186/s12864-022-08538-0 [DOI:10.1186/s12864-022-08538-0]
22. ‌Mahagna, M., Nir, I., Larbier, M., &Nitsan, Z. (1995). Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks. Reproduction Nutrition Development, 35(2), 201-212 [DOI:10.1051/rnd:19950208]
23. Mohammadigheisar, M., Kim, H. S., & Kim, I. H. (2018). Effect of inclusion of lysolecithin or multi-enzyme in low energy diet of broiler chickens. Journal of Applied Animal Research, 46(1), 1198-1201.10.1080/09712119.2018.1484358 [DOI:10.1080/09712119.2018.1484358]
24. Morgan, N., Choct, M., Toghyani, M., & Wu, S. (2018). Effects of dietary insoluble and soluble non-starch polysaccharides on performance and ileal and excreta moisture. In 29th Annual Australian Poultry Science Symposium (p. 34).‌
25. Navarro, D. M. D. L., Bruininx, E. M. A. M., De Jong, L., & Stein, H. H. (2019). Effects of inclusion rate of high fiber dietary ingredients on apparent ileal, hindgut, and total tract digestibility of dry matter and nutrients in ingredients fed to growing pigs. Animal Feed Science and Technology, 248, 1-9.‌ 10.1016/j.anifeedsci.2018.12.001 [DOI:10.1016/j.anifeedsci.2018.12.001]
26. Niu, Y., Rogiewicz, A., Shi, L., Patterson, R., & Slominski, B. A. (2022). The effect of multi-carbohydrase preparations on non-starch polysaccharides degradation and growth performance of broiler chickens fed diets containing high inclusion level of canola meal. Animal Feed Science and Technology, 293, 115450. 10.1016/j.anifeedsci.2022.115450 [DOI:10.1016/j.anifeedsci.2022.115450]
27. ‌ Qaisrani, S. N., Van Krimpen, M. M., Kwakkel, R. P., Verstegen, M. W. A., & Hendriks, W. H. (2015). Dietary factors affecting hindgut protein fermentation in broilers: a review. World's Poultry Science Journal, 71(1), 139-160.10.1017/S0043933915000124 [DOI:10.1017/S0043933915000124]
28. Ravindran, V., Tancharoenrat, P., Zaefarian, F., & Ravindran, G. (2016). Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Animal Feed Science and Technology, 213, 1-21.10.1016/j.anifeedsci.2016.01.012 [DOI:10.1016/j.anifeedsci.2016.01.012]
29. Ravindran, V., Hew, L. I., & Ravindran, G. (2004). Endogenous amino acid flow in the avian ileum: quantification using three techniques. British Journal of Nutrition, 92(2), 217-223. [DOI:10.1079/BJN20041202]
30. ‌Roofchaei, A., Rezaeipour, V., Vatandour, S., &Zaefarian, F. (2019). Influence of dietary carbohydrases, individually or in combination with phytase or an acidifier, on performance, gut morphology and microbial population in broiler chickens fed a wheat-based diet. Animal Nutrition, 5(1), 63-67. [In Persian] [DOI:10.1016/j.aninu.2017.12.001]
31. Saleh, A. A., Kirrella, A. A., Abdo, S. E., Mousa, M. M., Badwi, N. A., Ebeid, T. A., ... & Mohamed, M. A. (2019). Effects of dietary xylanase and arabinofuranosidase combination on the growth performance, lipid peroxidation, blood constituents, and immune response of broilers fed low-energy diets. Animals, 9(7), 467.‌ [DOI:10.3390/ani9070467]
32. Tejeda, O.J, & Kim, W.K (2021). Role of dietary fiber in poultry nutrition. Animals, 11(2), 461. 10.3390/ani11020461 [DOI:10.3390/ani11020461]
33. Tiwari, U. P., Chen, H., Kim, S. W., & Jha, R. (2018). Supplemental effect of xylanase and mannanase on nutrient digestibility and gut health of nursery pigs studied using both in vivo and in vitro models. Animal Feed Science and Technology, 245, 77-90. 10.1016/j.anifeedsci.2018.07.002 [DOI:10.1016/j.anifeedsci.2018.07.002]
34. Upadhaya, S. D., Lee, J. S., Jung, K. J., & Kim, I. H. (2018). Influence of emulsifier blends having different hydrophilic-lipophilic balance value on growth performance, nutrient digestibility, serum lipid profiles, and meat quality of broilers. Poultry Science, 97(1), 255-261.10.3382/ps/pex303‌ [DOI:10.3382/ps/pex303]
35. Viñado, A., Castillejos, L., Rodriguez-Sanchez, R., & Barroeta, A. C. (2019). Crude soybean lecithin as alternative energy source for broiler chicken diets. Poultry Science, 98(11),5601-5612.‌10.3382/ps/pez318 [DOI:10.3382/ps/pez318]
36. Wang, J., Choi, H., & Kim, W. K. (2020). Effects of dietary energy level and 1, 3-diacylglycerol on growth performance and carcass yield in broilers. Journal of Applied Poultry Research, 29(3), 665-672.‌10.1016/j.japr.2020.04.004 [DOI:10.1016/j.japr.2020.04.004]
37. Wickramasuriya, S., Kim, E., Shin, T. K., Cho, H. M., Kim, B., Patterson, R & Heo, J. M. (2019). Multi-carbohydrase addition into a corn-soybean meal diet containing wheat and wheat by products to improve growth performance and nutrient digestibility of broiler chickens. Journal of Applied Poultry Research, 28(2), 399-409.10.3382/japr/pfz002 [DOI:10.3382/japr/pfz002]
38. Wickramasuriya, S. S., Macelline, S. P., Kim, E., Shin, T. K., Cho, H. M., Jayasena, D. D., & Heo, J. M. (2022). Exogenous emulsifiers and multi-enzyme combination improves growth performance of the young broiler chickens fed low energy diets containing vegetable oil. Animal Bioscience, 35(10), 1585.10.5713/ab.22.0024 [DOI:10.5713/ab.22.0024]
39. Xu, Z. R., Wang, M. Q., Mao, H. X., Zhan, X. A., & Hu, C. H. (2003). Effects of L-carnitine on growth performance, carcass composition, and metabolism of lipids in male broilers. Poultry Science, 82(3), 408-413. [DOI:10.1093/ps/82.3.408]
40. Zaefarian, F., Abdollahi, M. R., Cowieson, A., & Ravindran, V. (2019). Avian liver: the forgotten organ. Animals, 9(2), 63.10.3390/ani9020063 [DOI:10.3390/ani9020063]
41. Zaman, Q. U., Mushtaq, T., Nawaz, H., Mirza, M. A., Mahmood, S., Ahmad, T., & Mushtaq, M. M. H. (2008). Effect of varying dietary energy and protein on broiler performance in hot climate. Animal Feed Science and Technology, 146(3-4), 302-312. 10.1016/j.anifeedsci.2008.01.006 [DOI:10.1016/j.anifeedsci.2008.01.006]
42. Zhao, P. Y., & Kim, I. H. (2017). Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Science, 96(5), 1341-1347.10.3382/ps/pew469 [DOI:10.3382/ps/pew469]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb