1. Abudabos, A. M., Aljumaah, M. R., Aabdullatif, A., & Suliman, G. M. (2020). Feed supplementation with some natural products on Salmonella-infected broilers' performance and intestinal injury during the starter period. Italian Journal of Animal Science, 19(1), 1304-1309. [
DOI:10.1080/1828051X.2020.1814170]
2. Ahn, D., Olson, D., Jo, C., Love, J., & Jin, S. (1999). Volatiles production and lipid oxidation in irradiated cooked sausage as related to packaging and storage. Journal of Food Science, 64(2), 226-229. [
DOI:10.1111/j.1365-2621.1999.tb15870.x]
3. Atterbury, R. J., Van Bergen, M., Ortiz, F., Lovell, M., Harris, J., De Boer, A., Wagenaar, J., Allen, V., & Barrow, P. (2007). Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Applied and Environmental Microbiology, 73(14), 4543-4549. [
DOI:10.1128/AEM.00049-07]
4. Bae, D., Lee, J.-W., Chae, J.-P., Kim, J.-W., Eun, J.-S., Lee, K.-W., & Seo, K.-H. (2021). Characterization of a novel bacteriophage φCJ22 and its prophylactic and inhibitory effects on necrotic enteritis and Clostridium perfringens in broilers. Poultry Science, 100(1), 302-313. [
DOI:10.1016/j.psj.2020.10.019]
5. Butaye, P., Devriese, L. A., & Haesebrouck, F. (2003). Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clinical Microbiology Reviews, 16(2), 175-188. [
DOI:10.1128/CMR.16.2.175-188.2003]
6. Chang, C. H., Teng, P. Y., Lee, T. T., & Yu, B. (2020). Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica. Asian-Australasian Journal of Animal Sciences, 33(11), 1797-1808. [
DOI:10.5713/ajas.19.0427]
7. Chen, C., Li, J., Zhang, H., Xie, Y., Xiong, L., Liu, H., & Wang, F. (2020). Effects of a probiotic on the growth performance, intestinal flora, and immune function of chicks infected with Salmonella pullorum. Poultry Science, 99(11), 5316-5323. [
DOI:10.1016/j.psj.2020.07.017]
8. Cieplak, T., Soffer, N., Sulakvelidze, A., & Nielsen, D. S. (2018). A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota. Gut Microbes, 9(5), 391-399. [
DOI:10.1080/19490976.2018.1447291]
9. Clavijo, V., & Flórez, M. J. V. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science, 97(3), 1006-1021. [
DOI:10.3382/ps/pex359]
10. Elhassan, M., Ali, A., Kehlet, A., Ali, O., & Harrington, D. (2021). The Response of Broiler Chicks to Dietary Supplementation with a Probiotic, Acidifiers Blend, and Their Combination. Brazilian Journal of Poultry Science, 23. [
DOI:10.1590/1806-9061-2021-1511]
11. Fiorentin, L., Vieira, N. D., & Barioni Jr, W. (2005). Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathology, 34(3), 258-263. [
DOI:10.1080/01445340500112157]
12. Fletcher, D., Qiao, M., & Smith, D. (2000). The relationship of raw broiler breast meat color and pH to cooked meat color and pH. Poultry Science, 79(5), 784-788. [
DOI:10.1093/ps/79.5.784]
13. Gadde, U., Kim, W., Oh, S., & Lillehoj, H. S. (2017). Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Animal Health Research Reviews, 18(1), 26-45. [
DOI:10.1017/S1466252316000207]
14. Gao, C.-Q., Shi, H.-Q., Xie, W.-Y., Zhao, L.-H., Zhang, J.-Y., Ji, C., & Ma, Q.-G. (2021). Dietary supplementation with acidifiers improves the growth performance, meat quality and intestinal health of broiler chickens. Animal Nutrition, 7(3), 762-769. [
DOI:10.1016/j.aninu.2021.01.005]
15. Giannenas, I., Papaneophytou, C., Tsalie, E., Pappas, I., Triantafillou, E., Tontis, D., & Kontopidis, G. (2014). Dietary supplementation of benzoic acid and essential oil compounds affects buffering capacity of the feeds, performance of turkey poults and their antioxidant status, pH in the digestive tract, intestinal microbiota and morphology. Asian-Australasian Journal of Animal Sciences, 27(2), 225. [
DOI:10.5713/ajas.2013.13376]
16. Gonçalves, G. A. M., Donato, T. C., Baptista, A. A. S., de Oliveira Corrêa, I. M., Garcia, K. C. O. D., & Andreatti Filho, R. L. (2014). Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal. Poultry Science, 93(1), 216-220. [
DOI:10.3382/ps.2013-03360]
17. Johnson, R., Gyles, C., Huff, W., Ojha, S., Huff, G., Rath, N., & Donoghue, A. (2008). Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Animal Health Research Reviews, 9(2), 201-215. [
DOI:10.1017/S1466252308001576]
18. Khan, S. H., & Iqbal, J. (2016). Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research, 44(1), 359-369. [
DOI:10.1080/09712119.2015.1079527]
19. Kim, K., Ingale, S., Kim, J., Lee, S., Lee, J., Kwon, I., & Chae, B. (2014). Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective. Animal Feed Science and Technology, 196, 88-95. [
DOI:10.1016/j.anifeedsci.2014.06.012]
20. Kim, K., Lee, G., Jang, J., Kim, J., & Kim, Y. (2013). Evaluation of anti-SE bacteriophage as feed additives to prevent Salmonella enteritidis (SE) in broiler. Asian-Australasian Journal of Animal Sciences, 26(3), 386. [
DOI:10.5713/ajas.2012.12138]
21. Lee, S., Hosseindoust, A., Goel, A., Choi, Y., Kwon, I. K., & Chae, B. (2016). Effects of dietary supplementation of bacteriophage with or without zinc oxide on the performance and gut development of weanling pigs. Italian Journal of Animal Science, 15(3), 412-418. [
DOI:10.1080/1828051X.2016.1188676]
22. Liebana, E., Crowley, C., Garcia-Migura, L., Breslin, M., Corry, J., Allen, V., & Davies, R. (2002). Use of molecular fingerprinting to assist the understanding of the epidemiology of Salmonella contamination within broiler production. British Poultry Science, 43(1), 38-46. [
DOI:10.1080/00071660120109872]
23. Lim, T.-H., Lee, D.-H., Lee, Y.-N., Park, J.-K., Youn, H.-N., Kim, M.-S., Lee, H.-J., Yang, S.-Y., Cho, Y.-W., & Lee, J.-B. (2011). Efficacy of bacteriophage therapy on horizontal transmission of Salmonella Gallinarum on commercial layer chickens. Avian Diseases, 55(3), 435-438. [
DOI:10.1637/9599-111210-Reg.1]
24. Mahdavi Sadati, M. S., Rezaeipour, V., & Abdullahpour, R. (2023). The effects of wheat grain type (whole and ground) pre-and post-pellet on performance, carcass characteristics, nutrient digestibility and blood immunity and metabolites in broiler chickens received acidified drinking water. Veterinary Research & Biological Products, 36(3), 12-23.
25. Marković, R., Šefer, D., Krstić, M., & Petrujkić, B. (2009). Effect of different growth promoters on broiler performance and gut morphology. Archivos de Medicina Veterinaria, 41(2), 163-169. [
DOI:10.4067/S0301-732X2009000200010]
26. McGrath, S., Fitzgerald, G. F., & van Sinderen, D. (2004). The impact of bacteriophage genomics. Current Opinion in Biotechnology, 15(2), 94-99. [
DOI:10.1016/j.copbio.2004.01.007]
27. Miller, R. W., Skinner, J., Sulakvelidze, A., Mathis, G. F., & Hofacre, C. L. (2010). Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian Diseases, 54(1), 33-40. [
DOI:10.1637/8953-060509-Reg.1]
28. Mirakzehi, M., Agah, M., Baranzehi, T., & Saleh, H. (2022). The Effects of Saccharomyces Cerevisiae and Citric Acid on Productive Performance, Egg Quality Parameters, Small Intestina
29. Morphology, and Immune-Related Gene Expression in Laying Japanese Quails. Brazilian Journal of Poultry Science, 24.
30. Olnood, C. G., Beski, S. S., Choct, M., & Iji, P. A. (2015). Use of Lactobacillus johnsonii in broilers challenged with Salmonella sofia. Animal Nutrition, 1(3), 203-212. [
DOI:10.1016/j.aninu.2015.07.001]
31. Paiva, D., Walk, C., & McElroy, A. (2014). Dietary calcium, phosphorus, and phytase effects on bird performance, intestinal morphology, mineral digestibility, and bone ash during a natural necrotic enteritis episode. Poultry Science, 93(11), 2752-2762. [
DOI:10.3382/ps.2014-04148]
32. Palamidi, I., Paraskeuas, V., Theodorou, G., Breitsma, R., Schatzmayr, G., Theodoropoulos, G., Fegeros, K., & Mountzouris, K. C. (2016). Effects of dietary acidifier supplementation on broiler growth performance, digestive and immune function indices. Animal Production Science, 57(2), 271-281. [
DOI:10.1071/AN15061]
33. Park, S., Perrotta, A., Hanning, I., Diaz-Sanchez, S., Pendleton, S., Alm, E., & Ricke, S. (2017). Pasture flock chicken cecal microbiome responses to prebiotics and plum fiber feed amendments. Poultry Science, 96(6), 1820-1830. [
DOI:10.3382/ps/pew441]
34. SA AF, E.-S. M., El-Mednay, N., & Abdel-Azeem, F. (2008). Thyroid activity, some blood constituents, organs morphology and performance of broiler chicks fed supplemental organic acids. International Journal of Poultry Science, 7(3), 215-222. [
DOI:10.3923/ijps.2008.215.222]
35. Saleh, H., Golian, A., Kermanshahi, H., & Mirakzehi, M. (2018). Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Italian Journal of Animal Science, 17(2), 386-395. [
DOI:10.1080/1828051X.2017.1362966]
36. Saleh, H., Golian, A., Kermanshahi, H., & Mirakzehi, M. T. (2017). Effects of dietary α-tocopherol acetate, pomegranate peel, and pomegranate peel extract on phenolic content, fatty acid composition, and meat quality of broiler chickens. Journal of Applied Animal Research, 45(1), 629-636. [
DOI:10.1080/09712119.2016.1248841]
37. Sklar, I., & Joerger, R. (2001). Attempts to utilize bacteriophage to combat. In: Salmonella.
38. Sokale, A., Menconi, A., Mathis, G., Lumpkins, B., Sims, M., Whelan, R., & Doranalli, K. (2019). Effect of Bacillus subtilis DSM 32315 on the intestinal structural integrity and growth performance of broiler chickens under necrotic enteritis challenge. Poultry Science, 98(11), 5392-5400. [
DOI:10.3382/ps/pez368]
39. Toro, H., Price, S., McKee, S., Hoerr, F., Krehling, J., Perdue, M., & Bauermeister, L. (2005). Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Diseases, 49(1), 118-124. [
DOI:10.1637/7286-100404R]
40. Upadhaya, S. D., Ahn, J. M., Cho, J. H., Kim, J. Y., Kang, D. K., Kim, S. W., Kim, H. B., & Kim, I. H. (2021). Bacteriophage cocktail supplementation improves growth performance, gut microbiome and production traits in broiler chickens. Journal of Animal Science and Biotechnology, 12(1), 1-12. [
DOI:10.1186/s40104-021-00570-6]
41. Van der Wielen, P. W., Biesterveld, S., Notermans, S., Hofstra, H., Urlings, B. A., & van Knapen, F. (2000). Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Applied and Environmental Microbiology, 66(6), 2536-2540. [
DOI:10.1128/AEM.66.6.2536-2540.2000]
42. Vinolya, R. E., Balakrishnan, U., Yasir, B., & Chandrasekar, S. (2021). Effect of dietary supplementation of acidifiers and essential oils on growth performance and intestinal health of broiler. Journal of Applied Poultry Research, 30(3), 100179. [
DOI:10.1016/j.japr.2021.100179]
43. Wang, J., Yan, L., Lee, J., & Kim, I. H. (2013). Evaluation of bacteriophage supplementation on growth performance, blood characteristics, relative organ weight, breast muscle characteristics and excreta microbial shedding in broilers. Asian-Australasian Journal of Animal Sciences, 26(4), 573. [
DOI:10.5713/ajas.2012.12544]
44. Wang, Y., Li, L., Gou, Z., Chen, F., Fan, Q., Lin, X., Ye, J., Zhang, C., & Jiang, S. (2020). Effects of maternal and dietary vitamin A on growth performance, meat quality, antioxidant status, and immune function of offspring broilers. Poultry Science, 99(8), 3930-3940. [
DOI:10.1016/j.psj.2020.03.044]
45. Wernicki, A., Nowaczek, A., & Urban-Chmiel, R. (2017). Bacteriophage therapy to combat bacterial infections in poultry. Virology Journal, 14(1), 1-13. [
DOI:10.1186/s12985-017-0849-7]
46. Xu, Y., Liu, L., Long, S., Pan, L., & Piao, X. (2018). Effect of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Animal Feed Science and Technology, 235, 110-119. [
DOI:10.1016/j.anifeedsci.2017.10.012]
47. Yang, X., Xin, H., Yang, C., & Yang, X. (2018). Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Animal Nutrition, 4(4), 388-393. [
DOI:10.1016/j.aninu.2018.04.005]
48. Zamanizadeh, A., Mirakzehi, M. T., Agah, M. J., Saleh, H., & Baranzehi, T. (2021). A comparison of two probiotics Aspergillus oryzae and, Saccharomyces cerevisiae on productive performance, egg quality, small intestinal morphology, and gene expression in laying Japanese quail. Italian Journal of Animal Science, 20(1), 232-242. [
DOI:10.1080/1828051X.2021.1878944]
49. Zhang, S., Shen, Y., Wu, S., Xiao, Y., He, Q., & Shi, S. (2019). The dietary combination of essential oils and organic acids reduces Salmonella enteritidis in challenged chicks. Poultry Science, 98(12), 6349-6355. [
DOI:10.3382/ps/pez457]