1. Alijani, S. (2015). Comparison of Two Singles-and Multiple Trait Random Regression Models in Estimation of Genetic Parameters of Production Traits in Holstein Dairy Cattle. Research on Animal Production, 5(10), 179-189. [In Persian]
2. Banos, G., & Coffey, M. P. (2010). Genetic association between body energy measured throughout lactation and fertility in dairy cattle. Animal, 4(2), 189-199. [
DOI:10.1017/S1751731109991182]
3. Berry, D. P., & Crowley, J. J. (2013). Cell biology symposium: genetics of feed efficiency in dairy and beef cattle. Journal of Animal Science, 91(4), 1594-1613. [
DOI:10.2527/jas.2012-5862]
4. Brito, L. F., Oliveira, H. R., Houlahan, K., Fonseca, P. A., Lam, S., Butty, A. M., ... & Schenkel, F. S. (2020). Genetic mechanisms underlying feed utilization and implementation of genomic selection for improved feed efficiency in dairy cattle. Canadian Journal of Animal Science, 100(4), 587-604. [
DOI:10.1139/cjas-2019-0193]
5. Connor, E. E. (2015). Invited review: Improving feed efficiency in dairy production: Challenges and possibilities. Animal, 9(3), 395-408. [
DOI:10.1017/S1751731114002997]
6. Connor, E. E., Hutchison, J. L., Norman, H. D., Olson, K. M., Van Tassell, C. P., Leith, J. M., & Baldwin, R. (2013). Use of residual feed intake in Holsteins during early lactation shows potential to improve feed efficiency through genetic selection. Journal of Animal Science, 91(8), 3978-3988. [
DOI:10.2527/jas.2012-5977]
7. Houlahan, K., Schenkel, F. S., Hailemariam, D., Lassen, J., Kargo, M., Cole, J. B., ... & Baes, C. F. (2021). Effects of incorporating dry matter intake and residual feed intake into a selection index for dairy cattle using deterministic modeling. Animals, 11(4), 1157. [
DOI:10.3390/ani11041157]
8. Hüttmann, H., Stamer, E., Junge, W., Thaller, G., & Kalm, E. (2009). Analysis of feed intake and energy balance of high-yielding first lactating Holstein cows with fixed and random regression models. Animal, 3(2), 181-188. [
DOI:10.1017/S175173110800325X]
9. Jamrozik, J., & Schaeffer, L. R. (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. Journal of Dairy Science, 80(4), 762-770. [
DOI:10.3168/jds.S0022-0302(97)75996-4]
10. Kirkpatrick, M., Lofsvold, D., & Bulmer, M. (1990). Analysis of the inheritance, selection and evolution of growth trajectories. Genetics, 124(4), 979-993. [
DOI:10.1093/genetics/124.4.979]
11. Koch, R. M., Swiger, L. A., Chambers, D., & Gregory, K. E. (1963). Efficiency of feed use in beef cattle. Journal of Animal science, 22(2), 486-494. [
DOI:10.2527/jas1963.222486x]
12. Krattenmacher, N., Thaller, G., & Tetens, J. (2019). Analysis of the genetic architecture of energy balance and its major determinants dry matter intake and energy-corrected milk yield in primiparous Holstein cows. Journal of Dairy Science, 102(4), 3241-3253. [
DOI:10.3168/jds.2018-15480]
13. Li, B., Berglund, B., Fikse, W. F., Lassen, J., Lidauer, M. H., Mäntysaari, P., & Løvendahl, P. (2017). Neglect of lactation stage leads to naive assessment of residual feed intake in dairy cattle. Journal of Dairy Science, 100(11), 9076-9084. [
DOI:10.3168/jds.2017-12775]
14. Li, B., Fikse, W. F., Lassen, J., Lidauer, M. H., Løvendahl, P., & Berglund, B. (2016). Genetic parameters fo dry matter intake in primiparous Holstein, Nordic Red and Jersey. Annual Meeting of the European Federation of Animal Science, Wageningen Academic Publishers. [
DOI:10.3168/jds.2015-10669]
15. Li, B., Fikse, W. F., Løvendahl, P., Lassen, J., Lidauer, M. H., Mäntysaari, P., & Berglund, B. (2018). Genetic heterogeneity of feed intake, energy-corrected milk, and body weight across lactation in primiparous Holstein, Nordic Red, and Jersey cows. Journal of Dairy Science, 101(11), 10011-10021. [
DOI:10.3168/jds.2018-14611]
16. Liinamo, A. E., Mäntysaari, P., Lidauer, M. H., & Mäntysaari, E. A. (2015). Genetic parameters for residual energy intake and energy conversion efficiency in Nordic Red dairy cattle. Acta Agriculturae Scandinavica, Animal Science, 65(2), 63-72. [
DOI:10.1080/09064702.2015.1070897]
17. Liinamo, A. E., Mäntysaari, P., & Mäntysaari, E. A. (2012). Genetic parameters for feed intake, production, and extent of negative energy balance in Nordic Red dairy cattle. Journal of Dairy Science, 95(11), 6788-6794. [
DOI:10.3168/jds.2012-5342]
18. Lu, Y., Vandehaar, M. J., Spurlock, D. M., Weigel, K. A., Armentano, L. E., Staples, C. R., ... & Tempelman, R. J. (2015). An alternative approach to modeling genetic merit of feed efficiency in dairy cattle. Journal of Dairy Science, 98(9), 6535-6551. [
DOI:10.3168/jds.2015-9414]
19. Manzanilla-Pech, C. I. V., Veerkamp, R. F., Calus, M. P. L., Zom, R., Van Knegsel, A., Pryce, J. E., & De Haas, Y. (2014). Genetic parameters across lactation for feed intake, fat-and protein-corrected milk, and liveweight in first-parity Holstein cattle. Journal of Dairy Science, 97(9), 5851-5862. [
DOI:10.3168/jds.2014-8165]
20. Manzanilla-Pech, C. I. V., Veerkamp, R. F., Tempelman, R. J., Van Pelt, M. L., Weigel, K. A., VandeHaar, M., & De Haas, Y. (2016). Genetic parameters between feed-intake-related traits and conformation in 2 separate dairy populations-the Netherlands and United States. Journal of Dairy Science, 99(1), 443-457. [
DOI:10.3168/jds.2015-9727]
21. Meyer, K. (2007). WOMBAT-A tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University Science, 8, 815-821. [
DOI:10.1631/jzus.2007.B0815]
22. Mohammadi, A., Alijani, S., Rafat, S. A., Taghizadeh, A., & Buhloli, M. (2013). Comparison of fitting performance of polynomial functions in random regression model for test day milk yield in of Iranian Holstein dairy cattle. Research on Animal Production, 3(6), 46-63. [In Persian]
23. NRC (2001). Nutrient Requirements of Dairy Cattle. 7th Edn. Washington, DC: Natl. Acad. Press.
24. Oliveira, H. R., Brito, L. F., Lourenco, D. A. L., Silva, F. F., Jamrozik, J., Schaeffer, L. R., & Schenkel, F. S. (2019a). Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. Journal of Dairy Science, 102(9), 7664-7683. [
DOI:10.3168/jds.2019-16265]
25. Seymour, D. J., Cánovas, A., Chud, T. C. S., Cant, J. P., Osborne, V. R., Baes, C. F., ... & Miglior, F. (2020). The dynamic behavior of feed efficiency in primiparous dairy cattle. Journal of Dairy Science, 103(2), 1528-1540. [
DOI:10.3168/jds.2019-17414]
26. Shadpour, S., Chud, T. C., Hailemariam, D., Oliveira, H. R., Plastow, G., Stothard, P., ... & Schenkel, F. S. (2022). Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Journal of Dairy Science, 105(10), 8257-8271. [
DOI:10.3168/jds.2021-21297]
27. Sjaunja, L. O. (1990). A Nordic proposal for an energy-corrected milk (ECM) formula. 27th Session International Committee for Recording and Productivity of Milk Animals; 2-6 July 1990, Paris, France.
28. Tempelman, R. J., Spurlock, D. M., Coffey, M., Veerkamp, R. F., Armentano, L. E., Weigel, K. A., & VandeHaar, M. J. (2015). Heterogeneity in genetic and nongenetic variation and energy sink relationships for residual feed intake across research stations and countries. Journal of Dairy Science, 98(3), 2013-2026. [
DOI:10.3168/jds.2014.8510]
29. VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414-4423. [
DOI:10.3168/jds.2007-0980]