دوره 15، شماره 3 - ( پاییز 1403 )                   جلد 15 شماره 3 صفحات 86-73 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahraki E, Kazemi Fard M, Rezaei M, Ansari Pirsarai Z, Barani M. (2024). Comparison of Nano Folic Acid and Folic Acid in Performance, Carcass Characteristics, Blood Parameters, and Microbial Population of Broiler Chickens. Res Anim Prod. 15(3), 73-86. doi:10.61186/rap.15.3.73
URL: http://rap.sanru.ac.ir/article-1-1403-fa.html
شهرکی ابراهیم، کاظمی فرد محمد، رضایی منصور، انصاری زربخت، بارانی محمود. مقایسه نانو اسید فولیک و اسید فولیک بر عملکرد، ویژگی‌های لاشه، فراسنجه‌های خونی و جمعیت میکروبی جوجه‌های گوشتی پژوهشهاي توليدات دامي 1403; 15 (3) :86-73 10.61186/rap.15.3.73

URL: http://rap.sanru.ac.ir/article-1-1403-fa.html


1- گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
2- مرکز تحقیقات قارچ شناسی و باکتریولوژی پزشکی دانشگاه علوم پزشکی کرمان، کرمان، ایران
چکیده:   (885 مشاهده)
چکیده مبسوط
مقدمه و هدف: کمبود ویتامین‌ها و مواد معدنی در جیره طیور یک چالش مهم برای متخصصین امر پرورش طیور است که در اثر فرآوری از بین می‌روند، این مواد مغذی و فعال زیستی در جیره باید حفظ شوند. محافظت از مواد مغذی و ویتامینی به‌شکل نانو یکی از مؤثرترین راه‌ها برای سلامتی و پیشگیری از بیماری‌ها در طیور است. اسید فولیک (ویتامین B9) به‌عنوان کوفاکتور بسیاری از آنزیم‌ها می‌باشد که شرایط انبارداری نامناسب یا حرارت حاصل از پخت، یکی از عوامل تخریب آن محسوب می‌شود. همچنین، اسید فولیک بهدلیل خاصیت آنتی‌اکسیدانی، بهسرعت اکسید می‌شود و ماندگاری پایینی دارد. با اینحال، به‌دلیل مصرف کم مواد غذایی غنی از فولات و از دست دادن بیش از حد فولات در طول فرآوری، غنی‌سازی اسید فولیک کارآمدترین وسیله برای افزایش مصرف فولات در جیره غذایی است. لذا حفاظت از این ویتامین در جیره غذایی بسیار حائز اهمیت است. روش‌های موجود برای محافظت از مواد مغذی یا مواد فعال شامل میکروکپسولاسیون خشک کردن اسپری، محصورسازی اکستروژن، پوشش بستر سیال شده، همبستگی، نانو لیپوزوم و محصورسازی با هیدروژل است. امروزه رشد فزاینده فناوری‌های نوین (نانو) به‌عنوان یکی از پیشتازترین علوم در عصر حاضر، در تمامی ابعاد و عرصه‌های حیات جانوری، گیاهی و زیستمحیطی وارد شده و افقهای جدیدی را در کرانه علوم طبیعی گشوده است. با تغییر اندازه ذرات از میکرومتر به نانومتر (یک میلیاردم متر) به‌دلیل افزایش نسبت سطح به حجم، تمام خواص فیزیکی و شیمیایی ماده تغییر می‌کند. یکی از مهمترین روشهای موجود جهت حفظ مواد مغذی روش نانولیپوزوم است. نانولیپوزوم‌ها معمولاً می‌توانند از دهها نانومتر تا چند میکرون متغیر باشند. لذا هدف از این پژوهش، بررسی تاثیر نانولیپوزوم اسید فولیک و اسید فولیک بر متابولیت‌های بیوشیمیایی خونی و جمعیت میکروبی بخش ایلئوم جوجه‌های گوشتی نر نژاد رأس 308 انجام شد.
مواد و روش‌ها: این تحقیق بهروش فاکتوریل 2×2 در قالب طرح کاملاً تصادفی با 250 قطعه جوجه گوشتی یک روزه با 5 تیمار و 5 تکرار و 10 مشاهده در هر تکرار انجام شد. تیمارهای این تحقیق عبارتند از: 1) جیره شاهد، 2) جیره فاقد اسید فولیک به‌همراه اسید فولیک (4 میلی‌گرم در لیتر آب) به‌شکل غیر نانو، 3) جیره فاقد اسید فولیک به‌همراه اسید فولیک (4 میلی‌گرم در لیتر آب) به‌شکل نانولیپوزوم اسید فولیک، 4) جیره شاهد به‌همراه اسید فولیک (4 میلی‌گرم در لیتر آب) به‌شکل غیر نانو، 5) جیره شاهد به‌همراه اسید فولیک (4 میلی‌گرم در لیتر آب) به‌شکل نانولیپوزوم اسید فولیک. همچنین در پایان آزمایش ویژگی‌های لاشه، غلظت مالون‌دی‌آلدئید و عملکرد پرندگان در حین آزمایش به‌صورت دوره‌ای مورد بررسی قرار گرفت.
یافته‌ها: اسید فولیک و نانو لیپوزوم اسید فولیک در دوره آغازین تاثیر معنی‌داری بر مصرف خوراک، افزایش وزن و ضریب تبدیل نداشت، ولی افزایش وزن در اثرات متقابل اسید فولیک و نانولیپوزوم اسید فولیک نسبت به جیره شاهد تأثیر معنی‌داری داشت. همچنین افزودن اسید فولیک در دوره رشد به‌طور معنی‌داری باعث افزایش وزن در جوجه‌های گوشتی شد (p<0/05)، به‌طوریکه این افزایش در تیمار نانولیپوزوم اسید فولیک بیشتر از سایر تیمارها بود. اثرات متقابل اسید فولیک و نانولیپوزوم اسید فولیک در دوره رشد و پایانی بر مصرف خوراک، افزایش وزن و ضریب تبدیل غذایی معنی‌دار بود (p<0/05). در دوره رشد و پایانی، مصرف خوراک، افزایش وزن و ضریب تبدیل در جیره شاهد به‌همراه اسید فولیک در آب (4 میلی‌گرم در لیتر) به‌شکل نانو لیپوزوم اسید فولیک، نسبت به سایر تیمارها به‌طور معنی‌داری افزایش داشت (p<0/05). تیمار شاهد کمترین مصرف خوراک، وزن و ضریب تبدیل را در دوره رشد و پایانی نسبت به سایر تیمارها داشت. در تیمار جیره شاهد به‌همراه اسید فولیک در آب (4 میلی‌گرم در لیتر) به‌شکل نانو لیپوزوم اسید فولیک، وزن سینه به‌طور معنی‌داری افزایش یافت (p<0/05).
تاثیر اسید فولیک بر برخی پارامترهای بیوشیمیایی مانند پروتئین، البومین و گلوبولین نسبت به تیمار شاهد معنی‌دار شد ((p<0/05. ولی نانو اسید فولیک نیز باعث افزایش معنی‌دار در پروتئین، آلبومین، گلوبولین و اسید اوریک شد ((p<0/05. بنابراین بالاترین میزان معنی‌داری پروتئین کل سرم، آلبومین و گلوبولین مربوط به تیمار جیره شاهد به‌همراه اسید فولیک در آب (4 میلی‌گرم در لیتر) به‌شکل نانو بود ((p<0/05.غلظت کلسترول و گلوکز در اثرات متقابل اسید فولیک و نانو لیپوزوم اسید فولیک نسبت به جیره شاهد تاثیر معنی‌داری داشت. چربی شکمی و تری گلیسیرید به‌طور معنی‌داری در تیمار جیره شاهد به‌همراه اسید فولیک در آب (4 میلی‌گرم در لیتر) به‌شکل نانو لیپوزوم اسید فولیک، کاهش داشت (p<0/05). ولی بیشرین درصد چربی شکمی و تری گلیسیرید در تیمار شاهد بود. اگرچه اسید فولیک معمولی و نانو لیپوزوم اسید فولیک و اثرات متقابل تأثیر معنی‌داری بر غلظت مالون دیآلدئید نداشت، ولی نانولیپوزوم اسید فولیک تأثیر مثبتی بر میانگین غلظت مالون دیآلدئید داشت. همچنین اسید فولیک معمولی و نانولیپوزوم اسید فولیک و اثرات متقابل آنها تأثیر معنی‌داری بر جمعیت میکروبی بخش ایلئوم نداشت.
نتیجهگیری: نتایج این پژوهش نشان داد که نانولیپوزوم کردن (محصور سازی) اسید فولیک در دوره رشد و پایانی باعث بهبود عملکرد، افزایش وزن سینه و کاهش چربی محوطه شکمی شد.

 
متن کامل [PDF 695 kb]   (502 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه طیور
دریافت: 1402/10/4 | پذیرش: 1403/1/17

فهرست منابع
1. Anand, A., Sugumaran, A., & Narayanasamy, D. (2019). Brain targeted delivery of anticancer drugs: prospective approach using solid lipid nanoparticles. IET Nanobiotechnology, 13(4), 353-362. [DOI:10.1049/iet-nbt.2018.5322]
2. Bai, Y., Wang, R., Yang, Y., Li, R., & Wu, X. (2021). Folic acid absorption characteristics and effect on cecal microbiota of laying hens. Frontiers in Veterinary Science, 8, 720851. [DOI:10.3389/fvets.2021.720851]
3. Barroeta, A., Baucells, M., Calsamiglia, S., Casals, R., Briz, R., & Davin, R. (2012). Optimum Vitamin Nutrition. In: 5M Publishing: Sheffield, UK.
4. Bhalerao, S., Hegde, M., Katyare, S., & Kadam, S. (2014). Promotion of omega-3 chicken meat production: an Indian perspective. World's Poultry Science Journal, 70(2), 365-374. [DOI:10.1017/S0043933914000373]
5. Bohan, M., Anderson, L. L., Trenkle, A. H., & Beitz, D. C. (2006). Effects of dietary macronutrients on appetite-related hormones in blood on body composition of lean and obese rats. Iowa State University Animal Industry Report, 3(1). [DOI:10.31274/ans_air-180814-908]
6. Bonucci, M., Kuperwasser, N., Barbe, S., Koka, V., de Villeneuve, D., Zhang, C., Srivastava, N., Jia, X., Stokes, M. P., & Bienaimé, F. (2020). mTOR and S6K1 drive polycystic kidney by the control of Afadin-dependent oriented cell division. Nature Communications, 11(1), 3200. [DOI:10.1038/s41467-020-16978-z]
7. Borda-Molina, D., Seifert, J., & Camarinha-Silva, A. (2018). Current perspectives of the chicken gastrointestinal tract and its microbiome. Computational and Structural Biotechnology Journal, 16, 131-139. [DOI:10.1016/j.csbj.2018.03.002]
8. Dwiastuti, R., Noegrohati, S., Istyastono, E. P., & Marchaban, M. (2016). Formulation and physical properties observations of soy lecithin liposome containing 4-n-butylresorcinol. AIP Conference Proceedings. [DOI:10.1063/1.4958598]
9. El-Demerdash, F. M., Yousef, M. I., & Elaswad, F. A. (2006). Biochemical study on the protective role of folic acid in rabbits treated with chromium (VI). Journal of Environmental Science and Health Part B, 41(5), 731-746. [DOI:10.1080/03601230600704282]
10. Fidalgo da Silva, E., Fong, J., Roye-Azar, A., Nadi, A., Drouillard, C., Pillon, A., & Porter, L. (2022). Beyond protein synthesis; the multifaceted roles of tuberin in cell cycle regulation. Frontiers in Cell and Developmental Biology, 9, 3814. [DOI:10.3389/fcell.2021.806521]
11. Geary, N. (2004). Endocrine controls of eating: CCK, leptin, and ghrelin. Physiology & behavior, 81(5), 719-733. [DOI:10.1016/j.physbeh.2004.04.013]
12. Gouda, A., Amer, S. A., Gabr, S., & Tolba, S. A. (2020). Effect of dietary supplemental ascorbic acid and folic acid on the growth performance, redox status, and immune status of broiler chickens under heat stress. Tropical Animal Health and Production, 52, 2987-2996. [DOI:10.1007/s11250-020-02316-4]
13. Guban, J., Korver, D., Allison, G., & Tannock, G. (2006). Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poultry Science, 85(12), 2186-2194. [DOI:10.1093/ps/85.12.2186]
14. Gursu, M. F., Onderci, M., Gulcu, F., & Sahin, K. (2004). Effects of vitamin C and folic acid supplementation on serum paraoxonase activity and metabolites induced by heat stress in vivo. Nutrition Research, 24(2), 157-164. [DOI:10.1016/j.nutres.2003.11.008]
15. Harper, A., Lindemann, M., & Kornegay, E. (1996). Fetal survival and conceptus development after 42 days of gestation in gilts and sows in response to folic acid supplementation. Canadian Journal of Animal Science, 76(1), 157-160. [DOI:10.4141/cjas96-023]
16. Hefner, G. (1969). The absorption of pteroylglutamic (folic) acid in rats. British Journal of Haematology, 16(3), 241-250. [DOI:10.1111/j.1365-2141.1969.tb00399.x]
17. Horoiwa, T. A., Oliveira, A. M., & Cerize, N. P. N. (2017). Development of polymeric colloidal nanocarrier based on maltodextrin. Revista IPT: Tecnologia e Inovação, 1(4). [DOI:10.34033/2526-5830-v1n4-4]
18. House, J., Braun, K., Ballance, D., O'connor, C., & Guenter, W. (2002). The enrichment of eggs with folic acid through supplementation of the laying hen diet. Poultry Science, 81(9), 1332-1337. [DOI:10.1093/ps/81.9.1332]
19. Husseiny, E. (1981). Effect of ambient temperature on mineral retention and balance of the broiler chicks. Poultry Sciences, 60(1), 1651. (Abstr).
20. Ilha, J., do Espírito-Santo, C. C., & de Freitas, G. R. (2018). mTOR signaling pathway and protein synthesis: from training to aging and muscle autophagy. Muscle Atrophy, 139-151. [DOI:10.1007/978-981-13-1435-3_7]
21. Institute, S. (2009). SAS Data Surveyor for Clickstream Data 2.1: User's Guide. SAS Institute Incorporated.
22. Jeong, J., & Kim, I. (2014). Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poultry Science, 93(12), 3097-3103. [DOI:10.3382/ps.2014-04086]
23. Jing, M., Munyaka, P., Tactacan, G., Rodriguez-Lecompte, J., & House, J. (2014). Performance, serum biochemical responses, and gene expression of intestinal folate transporters of young and older laying hens in response to dietary folic acid supplementation and challenge with Escherichia coli lipopolysaccharide. Poultry Science, 93(1), 122-131. [DOI:10.3382/ps.2013-03384]
24. Kumar, K. A., Lalitha, A., Pavithra, D., Padmavathi, I. J., Ganeshan, M., Rao, K. R., Venu, L., Balakrishna, N., Shanker, N. H., & Reddy, S. U. (2013). Maternal dietary folate and/or vitamin B12 restrictions alter body composition (adiposity) and lipid metabolism in Wistar rat offspring. The Journal of Nutritional Biochemistry, 24(1), 25-31. [DOI:10.1016/j.jnutbio.2012.01.004]
25. Li, Y., Zhang, X., Sun, Y., Feng, Q., Li, G., Wang, M., Cui, X., Kang, L., & Jiang, Y. (2013). Folate deficiency during early-mid pregnancy affects the skeletal muscle transcriptome of piglets from a reciprocal cross. PLoS One, 8(12), e82616. [DOI:10.1371/journal.pone.0082616]
26. Liang, S., Liu, X., Zhao, J., Liu, R., Huang, X., Liu, Y., Yang, X., & Yang, X. (2022). Effects of high-dose folic acid on protein metabolism in breast muscle and performance of broilers. Poultry Science, 101(10), 101935. [DOI:10.1016/j.psj.2022.101935]
27. Liu, Y., Liu, X., Zhou, J., Ren, Z., Yang, X., & Cao, Y. (2019). Folic acid perfusion administration reduced abdominal fat deposition in starter Arbor Acres broilers. Poultry Science, 98(12), 6816-6825. [DOI:10.3382/ps/pez413]
28. Liu, Y., Shen, J., Yang, X., Sun, Q., & Yang, X. (2018). Folic acid reduced triglycerides deposition in primary chicken hepatocytes. Journal of Agricultural and Food Chemistry, 66(50), 13162-13172. [DOI:10.1021/acs.jafc.8b05193]
29. Madadi Zadeh, S., Mirmahmoudi, R., Esmaeilipour, O., Badakhshan. Y. (2017). Effects of folic acid and zinc on growth performance and some blood components in broiler chickens under heat stress. University of Jiroft.
30. Madziva, H., Kailasapathy, K., & Phillips, M. (2005). Alginate-pectin microcapsules as a potential for folic acid delivery in foods. Journal of Microencapsulation, 22(4), 343-351. [DOI:10.1080/02652040500100931]
31. Matte, J. J., Girard, C. L., & Brisson, G. J. (1992). The role of folic acid in the nutrition of gestating and lactating primiparous sows. Livestock Production Science, 32(2), 131-148. [DOI:10.1016/S0301-6226(12)80032-7]
32. McCann, M. E., McCracken, K. J., Hoey, L., Pentieva, K., McNulty, H., & Scott, J. (2004). Effect of dietary folic acid supplementation on the folate content of broiler chicken meat. British Poultry Science, 45, S65-6. [DOI:10.1080/00071660410001698399]
33. Meligy, A. M., Abd El-Hamid, M. I., Yonis, A. E., Elhaddad, G. Y., Abdel-Raheem, S. M., El-Ghareeb, W. R., Mohamed, M. H., Ismail, H., & Ibrahim, D. (2023). Liposomal encapsulated oregano, cinnamon, and clove oils enhanced the performance, bacterial metabolites antioxidant potential, and intestinal microbiota of broiler chickens. Poultry Science, 102(6), 102683. [DOI:10.1016/j.psj.2023.102683]
34. Pertiwi, H., Nur Mahendra, M. Y., & Kamaludeen, J. (2022). Folic Acid: sources, chemistry, absorption, metabolism, beneficial effects on poultry performance and health. Veterinary Medicine International, 2022(1), 2163756. [DOI:10.1155/2022/2163756]
35. Pieroth, R., Paver, S., Day, S., & Lammersfeld, C. (2018). Folate and its impact on cancer risk. Current Nutrition Reports, 7, 70-84. [DOI:10.1007/s13668-018-0237-y]
36. Rezaei, M., Sabetkasaei, M., Kalantari, N., Hedayati, M., Abadi, A., & Omidvar, N. (2011). Effect of Folic Acid on serum Leptin, Grehlin concentration, and feed intake in male Wistar rats [Experimental research article]. Physiology and Pharmacology, 14(4), 426-434.
37. Sahin, K., Onderci, M., Sahin, N., Gursu, M., & Kucuk, O. (2003). Dietary vitamin C and folic acid supplementation ameliorates the detrimental effects of heat stress in Japanese quail. The Journal of Nutrition, 133(6), 1882-1886. [DOI:10.1093/jn/133.6.1882]
38. Scott, J. M. (1999). Folate and vitamin B12. Proceedings of the Nutrition Society, 58(2), 441-448. [DOI:10.1017/S0029665199000580]
39. Setola, E., Monti, L. D., Galluccio, E., Palloshi, A., Fragasso, G., Paroni, R., Magni, F., Sandoli, E. P., Lucotti, P., & Costa, S. (2004). Insulin resistance and endothelial function are improved after folate and vitamin B12 therapy in patients with metabolic syndrome: relationship between homocysteine levels and hyperinsulinemia. European Journal of Endocrinology, 151(4), 483-489. [DOI:10.1530/eje.0.1510483]
40. Shao, M., Hussain, Z., Thu, H. E., Khan, S., Katas, H., Ahmed, T. A., ... & Bukhari, S. N. A. (2016). Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids and Surfaces B: Biointerfaces, 147, 475-491. [DOI:10.1016/j.colsurfb.2016.08.027]
41. Svihus, B., Choct, M., & Classen, H. L. (2013). Function and nutritional roles of the avian caeca: a review. World's Poultry Science Journal, 69(2), 249-264. [DOI:10.1017/S0043933913000287]
42. Tactacan, G., Jing, M., Thiessen, S., Rodriguez-Lecompte, J., o'Connor, D., Guenter, W., & House, J. (2010). Characterization of folate-dependent enzymes and indices of folate status in laying hens supplemented with folic acid or 5-methyltetrahydrofolate. Poultry Science, 89(4), 688-696. [DOI:10.3382/ps.2009-00417]
43. Tactacan, G., Rodriguez-Lecompte, J., Karmin, O., & House, J. (2011). Functional characterization of folic acid transport in the intestine of the laying hen using the everted intestinal sac model. Poultry Science, 90(1), 83-90. [DOI:10.3382/ps.2010-01029]
44. Tapiero, H., Tew, K., Gate, L., & Machover, D. (2001). Prevention of pathologies associated with oxidative stress and dietary intake deficiencies: folate deficiency and requirements. Biomedicine & Pharmacotherapy, 55(7), 381-390. [DOI:10.1016/S0753-3322(01)00077-4]
45. Terčič, D., Pestotnik, M. (2014). Effect of excess folic acid on egg production, fertility and hatchability in layer breeders. Acta Agraria Kaposváriensis, 18, 122-128.
46. Wang, L., Tan, X., Wang, H., Wang, Q., Huang, P., Li, Y., Li, J., Huang, J., Yang, H., & Yin, Y. (2021). Effects of varying dietary folic acid during weaning stress of piglets. Animal Nutrition, 7(1), 101-110. [DOI:10.1016/j.aninu.2020.12.002]
47. Wu, S., Guo, W., Li, X., Liu, Y., Li, Y., Lei, X., ... & Yang, X. (2019). Paternal chronic folate supplementation induced the transgenerational inheritance of acquired developmental and metabolic changes in chickens. Proceedings of the Royal Society B, 286(1910), 20191653. [DOI:10.1098/rspb.2019.1653]
48. Xing, J., Jing, W., Zhang, Y., Liu, L., Xu, J., & Chen, X. (2018). Identification of differentially expressed genes in broiler offspring under maternal folate deficiency. Physiological Genomics, 50(12), 1015-1025. [DOI:10.1152/physiolgenomics.00086.2018]
49. Xing, J., Kang, L., & Jiang, Y. (2011). Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers. Molecular Biology Reports, 38, 1975-1981. [DOI:10.1007/s11033-010-0319-4]
50. Yeo, L. K., Olusanya, T. O. B., Chaw, C. S., & Elkordy, A. A. (2018b). Brief Effect of a Small Hydrophobic Drug (Cinnarizine) on the Physicochemical Characterisation of Niosomes Produced by Thin-Film Hydration and Microfluidic Methods. Pharmaceutics, 10(4), 185. [DOI:10.3390/pharmaceutics10040185]
51. Yoshioka, T., Kawada, K., Shimada, T., & Mori, M. (1979). Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology, 135(3), 372-376. [DOI:10.1016/0002-9378(79)90708-7]
52. Zhang, Y., Jing, W., Zhang, N., Hao, J., & Xing, J. (2020). Effect of maternal folate deficiency on growth performance, slaughter performance, and serum parameters of broiler offspring. The Journal of Poultry Science, 57(4), 270-276. [DOI:10.2141/jpsa.0190125]
53. Zuidam, N. J., & Shimoni, E. (2010). Overview of microencapsulates for use in food products or processes and methods to make them. Encapsulation Technologies for Active Food Ingredients and Food Processing, 3-29. [DOI:10.1007/978-1-4419-1008-0_2]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb