1. Abdoli, R., Zamani, P., Mirhosseini, S. Z., Ghavi Hossein-Zadeh, N., & Almasi, M. (2019). Genetic parameters and trends for litter size in Markhoz goats. Revista Colombiana de Ciencias Pecuarias, 32(1),58-63. [
DOI:10.17533/udea.rccp.v32n1a07]
2. Bezdicek, J., Stadnik, L., & Louda, F. (2015). The influence of inbreeding depression on reproduction traits-age at first calving in dairy cows. Bulgarian Journal of Agricultural Science, 21(3), 680-686.
3. Boroujeni, P.B., Sabbaghian, M., Totonchi, M., Sodeifi, N., Sarkardeh, H., Samadian, A., Sadighi-Gilani M. A., & Gourabi, H. (2018). Expression analysis of genes encoding TEX11, TEX12, TEX14 and TEX15 in testis tissues of men with non-obstructive azoospermia. JBRA Assist Reproduction, 22(3), 185-192 [
DOI:10.5935/1518-0557.20180030]
4. Bonde, J. P., Flachs, E. M., Rimborg, S., Glazer, C. H., Giwercman, A., Ramlau-Hansen, C. H., & Bräuner, E. V. (2016). The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: A systematic review and meta-analysis. Human Reproduction Update, 23, 104-125. [
DOI:10.1093/humupd/dmw036]
5. Bu, D., Luo, H., Huo, P., Wang, Z., Zhang, S., He, Z., Wu, Y., Zhao, L., & Guo, J. (2021). KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research, 49, 317-325. [
DOI:10.1093/nar/gkab447]
6. Clancey, E., Kiser, J. N., Moraes, J. G. N., Dalton, J. C., Spencer, T. E., & Neibergs, H. L. (2019). Genome-wide association analysis and gene set enrichment analysis with SNP data identify genes associated with 305-day milk yield in Holstein dairy cows. Animal Genetics, (3), 254-258. [
DOI:10.1111/age.12792]
7. Cochran, S. D., Cole, J. B., Null, D. J., & Hansen, P. J. (2013). Discovery of single nucleotide polymorphisms in candidate genes associated with fertility and production traits in Holstein cattle. BMC Genetic, 7(14): 49. [
DOI:10.1186/1471-2156-14-49]
8. Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nature Protocols, 4, 1184-1191. [
DOI:10.1038/nprot.2009.97]
9. Dadousis, C., Pegolo, S., Rosa, G. J. M., Gianola, D., Bittante, G., & Cecchinato, A. (2017). Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science, 100, 1223-1231. [
DOI:10.3168/jds.2016-11587]
10. Esmaeili-Fard, S. M., Gholizadeh, M., Hafezian, S. H., & Abdollahi-Arpanahi, R. (2021). Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep. PLoS One, 16(1), e0244408. [
DOI:10.1371/journal.pone.0244408]
11. Fernández, J. C., Pérez, J. E., Herrera, N., Martínez, R., Bejarano, D., & Rocha J. F. (2019). Genomic association study for age at first calving and calving interval in Romosinuano and Costeño con Cuernos cattle. Genetics and Molecular Research, 18(2), 1-13. [
DOI:10.4238/gmr18258]
12. Gholizadeh, M., & Esmaeili-Fard, S. M. (2022). Multi-population joint genome-wide association study to detect genomic regions associated with litter size in sheep. Animal Production Research, 11(3), 15-26. In Persian.
13. Ghiasi, H., & Abdollahi-Arpanahi, R. (2021). The candidate genes and pathways affecting litter size in sheep. Small Ruminant Research, 205, 106546. [
DOI:10.1016/j.smallrumres.2021.106546]
14. Hernández-Montiel, W., Martínez-Núñez, M. A., Ramón-Ugalde, J. P., Román-Ponce, S. I., Calderón-Chagoya, R., & Zamora-Bustillos, R. (2020). Genome-Wide Association Study Reveals Candidate Genes for Litter Size Traits in Pelibuey Sheep. Animals (Basel), 10(3), 434. [
DOI:10.3390/ani10030434]
15. Hinrichs, A. L., Larkin, E. K., & Suarez, B. K. (2009). Population Stratification and Patterns of Linkage Disequilibrium. Genetic Epidemiology, 33, 88-92. [
DOI:10.1002/gepi.20478]
16. Khaltabadi Farahani, A. H., mohammadi, H., & Moradi, H. (2020). Gene set enrichment analysis using genome-wide association study to identify genes and pathways associated with litter size in various sheep breeds. Animal Production, 22(3), 325-335. In Persian.
17. Johnston, S. E., McEwan, J. C., Pickering, N. K., Kijas, J. W., Beraldi, D., Pilkington, J. G., Pemberton, J. M., & Slate, J. (2011). Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Molecular Ecology, 20, 2555-2566. [
DOI:10.1111/j.1365-294X.2011.05076.x]
18. Luo, N., Cheng, W., Zhou, Y., Gu, B., Zhao, Z., & Zhao, Y. (2021). Screening candidate genes regulating placental development from trophoblast transcriptome at early pregnancy in Dazu black goats (Capra hircus). Animals, 11, 2132. [
DOI:10.3390/ani11072132]
19. Marjanovic, J., & Calus. M. P. L. (2020). Factors affecting accuracy of estimated effective number of chromosome segments for numerically small breeds. Journal of Animal Breeding and Genetics, 138, 151-160. [
DOI:10.1111/jbg.12512]
20. McBride, D., Carré, W., Sontakke, S. D., Hogg, C. O., & Law. A. (2012). Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary. Reproduction, 144, 221-233. [
DOI:10.1530/REP-12-0025]
21. Menezo, Y. J., Silvestris, E., Dale, B., & Elder, K. (2016). Oxidative stress and alterations in DNA methylation: Two sides of the same coin in reproduction. Reproduction, 33, 668-683. [
DOI:10.1016/j.rbmo.2016.09.006]
22. Mohammadi, H., Najafi, A., & Javanmard, A. (2022). Genome-wide Association Study Related to Semen Traits Based on Gene-set Enrichment Analysis in Holstein Bulls. Research on Animal Production, 13 (35), 168-175 (In Persian). [
DOI:10.52547/rap.13.35.168]
23. Mohammadabadi, M., Bordbar, F., Jensen, J., Du, M., & Guo, W. (2021). Key genes regulating skeletal muscle development and growth in farm animals. Animals, 11, 835. [
DOI:10.3390/ani11030835]
24. Moosanezhad Khabisi, M., Esmailizadeh, A., & Asadi Fozi, M. (2022). Evaluation of genomic inbreeding rate in Iranian native sheep using dense SNP markers (600K). Research on Animal Production, 13 (35), 158-167 (In Persian). [
DOI:10.52547/rap.13.35.158]
25. Mota, L. F. M., Lopes, F. B., Fernandes, G. A., Rosa, G. J. M., Magalhães, A. F. B., Carvalheiro, R., & Albuquerque, L.G. (2020). Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers. Scientific Reports, 10(1), 6481. [
DOI:10.1038/s41598-020-63516-4]
26. Ortega, M. S., Denicol, A. C., Cole, J. B., Null, D. J., & Hansen, P. J. (2016). Use of single nucleotide polymorphisms in candidate genes associated with daughter pregnancy rate for prediction of genetic merit for reproduction in Holstein cows. Animal Genetics, 47(3), 288-97. [
DOI:10.1111/age.12420]
27. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. [
DOI:10.1086/519795]
28. Salazar-Carranza, M., Castillo-Badilla, G., Murillo-Herrera, J., Hueckmann-Voss, F., & Romero-Zúñiga, J. J. (2014). Effect of age at first calving on first lactation milk yield in holstein cows from Costa Rican specialized dairy herds. Open Journal of Veterinary Medicine, 4(09), 197. [
DOI:10.4236/ojvm.2014.49023]
29. Tsartsianidou, V., Pavlidis, A., Tosiou, E., Arsenos, G., Banos, G., & Triantafyllidis, A. (2023). Novel genomic markers and genes related to reproduction in prolific Chios dairy sheep: a genome-wide association study. Animal, 17, 100723. [
DOI:10.1016/j.animal.2023.100723]
30. Wang, L., Jia, P., & Wolfinger, R. D. (2011). Gene set analysis of genome-wide association studies: Methodological issues and perspectives. Genomics, 98, 1-8. [
DOI:10.1016/j.ygeno.2011.04.006]
31. Wang, K., Liu, X., Qi, T., Hui, Y., Yan, H., Lang, X., & Pan, C. (2021). Whole-genome sequencing to identify candidate genes for litter size and to uncover the variant function in goats (Capra hircus). Genomics, 13(1), 142-150. [
DOI:10.1016/j.ygeno.2020.11.024]
32. Xu, S. S., Gao, L., Xie, X. L., Ren, Y. L., Shen, Z. Q., Wang, F., Shen, M., Eyϸórsdóttir, E., Hallsson, J. H., Kiseleva, T., Kantanen, J., & Li, M. H. (2018). Genome-wide association analyses highlight the potential for different genetic mechanisms for litter size among sheep breeds. Frontiers Genetics, 9, 118. [
DOI:10.3389/fgene.2018.00118]
33. Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, 14-23. [
DOI:10.1186/gb-2010-11-2-r14]
34. Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44, 821. [
DOI:10.1038/ng.2310]
35. Zhang, Y. E. (2017). Non-Smad signaling pathways of the TGF- family. Cold Spring Harbor Perspectives in Biology, 9, 56-71. [
DOI:10.1101/cshperspect.a022129]