دوره 14، شماره 39 - ( بهار 1402 )                   جلد 14 شماره 39 صفحات 77-66 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vafaee F, Chaji M, Khorasani O. (2023). Comparison of the Effect of using Chemical Buffer and Acid-Consuming Bacteria on Digestibility and Fermentation, Growth Performance and Meat Quality of Lambs Fed with High Concentrate Diets. rap. 14(39), 66-77.
URL: http://rap.sanru.ac.ir/article-1-1331-fa.html
وفائی فرشته، چاجی مرتضی، خراسانی امید. مقایسه ی اثر استفاده از بافر شیمیایی و باکتری‌های مصرف‎ کننده اسید بر قابلیت هضم و تخمیر، عملکرد رشد و کیفیت گوشت بره‌های تغذیه شده با جیره‌های پرکنسانتره پژوهشهاي توليدات دامي 1402; 14 (39) :77-66

URL: http://rap.sanru.ac.ir/article-1-1331-fa.html


گروه علوم دامی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان
چکیده:   (870 مشاهده)
چکیده مبسوط
مقدمه و هدف:
جیره­ های پر کنسانتره به­ سرعت در شکمبه تجزیه می­ شوند و با تولید سریع و زیاد اسید­لاکتیکpH شکمبه را کاهش می ­دهند. استفاده از بافر شیمیایی یا بیولوژیکی باعث بهبود شرایط هضم و تخمیر در جیره­ ی با کنسانتره بالا می ­شود. بر این اساس این پژوهش با هدف مقایسه‌ی تاثیر استفاده از باکتری مصرفکننده اسید به ­عنوان تنظیم ­کننده pH (بافر بیولوژیکی) و بافر شیمیایی برای بهبود قابلیت هضم و تخمیر جیره‌ه ای پرکنسانتره انجام شد.

مواد و روش‏ ها: در آزمایش حاضر از ۲۱ رأس بره­ نر پرواری عربی با میانگین وزن 2/50 ± 34/35 کیلوگرم و میانگین سن 1 ± ۸ ماه در قالب طرح کاملا تصادفی با 3 تیمار و ۷ تکرار به مدت ۵۰ روز استفاده شد. تیمارهای آزمایشی شامل: 1- جیره شاهد (70 درصد کنسانتره و 30 درصد علوفه، بدون بافر و باکتری)، 2- جیره شاهد + یک درصد بافر بیکربنات­سدیم، 3- جیره شاهد + سه میلی­لیتر باکتری مگاسفرا السدنی ‌به‌همراه دو گرم مخمر ساکارومایسس سرویسیه (باکتری-مخمر) بودند. مصرف خوراک، قابلیت­ هضم مواد مغذی، عملکرد پروار، فراسنجه­ های خونی و تخمیری شکمبه، جمعیت پروتوزوآ، و برخی ویژه‌گی‌های کیفی گوشت اندازه­ گیری شدند. در پایان دوره، بره­ ها کشتار و اجزای لاشه مورد تجزیه و وزن کشی قرار گرفت.
یافته‏ ها: قابلیت­ هضم مواد مغذی و عملکرد رشد تحت تاثیر تیمارهای آزمایشی قرار نگرفت. جمعیت پروتوزوآی شکمبه در تیمار دریافت­ کننده­ی باکتری-مخمر نسبت به شاهد به‌طور معنی‌داری بیشتر بود (0/05>p). غلظت نیتروژن آمونیاکی و pH شکمبه تحت تاثیر تیمارهای آزمایشی قرار گرفت،
به ­طوری که در تیمارهای حاوی بافر شیمیایی و یا بیولوژیکی نسبت به شاهد
pH شکمبه افزایش و نیتروژن آمونیاکی کاهش یافت. اما فراسنجه­ های خونی و کبدی، ویژه‌گی‌های لاشه نظیر اندازه و وزن قطعات لاشه، شاخصه‌های رنگ سنجی گوشت تحت تاثیر تیمارهای آزمایشی قرار نگرفت.

نتیجه­ گیری: در کل، نتایج آزمایش حاضر نشان داد که استفاده از باکتری مصرفکننده اسید ‌به‌عنوان تنظیم ­کننده pH، اثراتی قابل رقابت با بافر بیکربنات و حتی در مواردی بهتر دارد.
متن کامل [PDF 3083 kb]   (242 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه نشخوارکنندگان
دریافت: 1401/8/6 | ویرایش نهایی: 1402/3/9 | پذیرش: 1401/9/27 | انتشار: 1402/3/9

فهرست منابع
1. AlZahal, O., H. McGill, A. Kleinberg, J.I. Holliday, I.K. Hindrichsen, T.F. Duffield and B.W. McBride. 2014. Use of a direct-fed microbial product as asupplement during the transition period in dairy cattle. Journal of dairy science, 97: 7102-7114. doi:10.3168/jds.2014-8248 PMID: 25218748(19). [DOI:10.3168/jds.2014-8248]
2. AOAC. 2016. International. Official Methods of Analysis. 19th ed. Gaithersburg, MD: Association of Official Analytical Chemists International. Gaithersburg, USA.
3. Apaoblaza, A., A. Galaz, P. Strobel, A. Ramírez-Reveco, N. Jeréz-Timaure and C. Gallo. 2015. Glycolytic potential and activity of adenosine monophosphate kinase (AMPK), glycogen phosphorylase (GP) and glycogen debranching enzyme (GDE) in steer carcasses with normal (<5.8) or high (>5.9) 24 H pH determined in M. longissimus dorsi. Meat Science, 101:83-9. doi: 10.1016/j.meatsci.2014.11.008 PMID: 29786478(34). [DOI:10.1016/j.meatsci.2014.11.008]
4. Aschenbach, J.R., G.B. Penner, V. Stumpff and G. Gabel. 2014. Ruminant nutrition symposium: role of fermentation acid absorption in the regulation of ruminal pH. Journal of animal science, 89(4): 1092-1107. doi: 10.2527/jas.2010-3301 PMID: 20952531(3). [DOI:10.2527/jas.2010-3301]
5. Aschenbach, J.R., Q, Zebeli, A.K. Patra, G. Greco, S. Amasheh and G.B. Penner. 2019. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. Journal of Dairy Science, 102(2):1866-1882. doi: 10.3168/jds.2018-15243 PMID: 30580938(9). [DOI:10.3168/jds.2018-15243]
6. Baiomy, A.A. 2010. Influnce of live Yeast on milk priduction, composition and some blood metabolites of Ossimi ewes during the ilking period. Journal of Animal and Poultry Production, 1(10): 469-480. doi: 10.21608/jappmu.2010.86260(26). [DOI:10.21608/jappmu.2010.86260]
7. Chaji, M., E. Direkvandi and A.Z.M. Salem. 2020. Ensiling of Conocarpus erectus tree leaves with molasses, exogenous enzyme and Lactobacillus plantarum impacts on ruminal sheep biogases production and fermentation. Agroforestry Systems, 94: 1611-1623. doi: 10.1007/ s10457-019-00436-x (4). [DOI:10.1007/s10457-019-00436-x]
8. De Backer, C.J.S. and L. Hudders. 2015. Meat morals: relationship between meat consumption consumer attitudes towards human and animal welfare and moral behavior. Meat Science, 99: 68-74. doi: 10.1016/j.meatsci.2014.08.011 PMID: 25282670(36). [DOI:10.1016/j.meatsci.2014.08.011]
9. DeClerck, J.C., Z.E. Wade, N.R. Reeves, M.F. Miller, B.J. Johnson, G.A. Ducharme and R.J. Rathmann. 2020. Influence of Megasphaera elsdenii and feeding strategies on feedlot performance, compositional growth and carcass parameters of early weaned, beef calves. Translational Animal Science, 4(2): 863-875. doi: 10.1093/tas/txaa031 PMID: 32705029(10). [DOI:10.1093/tas/txaa031]
10. Dehority, B.A., S.K.R. Karnati, J. Sylvester, Z. Yu, M. Morrison and J.L. Firkins. 2003. Specific PCR amplification of protozoal 18S rDNA sequences from DNA extracted from ruminal samples of cows. Journal of animal science, 81(3): 812-815. [DOI:10.2527/2003.813812x]
11. Didarkhah, M. and E. Dirandeh. 2018. The effect of probiotic and prebiotic supplements on performance and health of Baluchi growing lambs. Research on Animal Production, 9(21): 36-45 (In Persian). [DOI:10.29252/rap.9.21.36]
12. Ding, J., Z.M. Zhou, L.P. Ren and Q.X. Meng. 2008. Effect of monensin and live Yeast supplementation on growth performance, nutrient digestibility, carcasscharacteristics andruminal fermentation parameters in lambs fed steam-flaked corn-based diets. Asian-Australasian Journal of Animal Sciences, 21(4): 547-554. doi: 10.5713/ ajas.2008.70353(27). [DOI:10.5713/ajas.2008.70353]
13. Eynipour, P., M. Chaji and M. Sari. 2019. Use of post‐harvest common bean (Phaseolus vulgaris L.) residues in diet of lambs and its effect on finishing performance, rumen fermentation, protozoa population and meat characteristics. Journal of animal physiology and animal nutrition, 103(6): 1708-1718. doi: 10.1111/jpn.13192 PMID:31518020(14). [DOI:10.1111/jpn.13192]
14. Geng, C.Y., Q.X. Meng, L.P. Ren, Z.M. Zhou, M. Zhang and C.G. Yan. 2018. Yan. Comparison of ruminal fermentation parameters, fatty acid composition and flavour of beef in finishing bulls fed active dry yeast (Saccharomyces cerevisiae) and yeast culture. Animal Production Science, 58(5): 841-847. doi: 10.1071/AN15501. [DOI:10.1071/AN15501]
15. Guedes, C.M., D. Goncalves, M.A.M. Rodrigues and A. Dias-da-Silva. 2008. Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Animal Feed Science and Technology. 145: 27-40. doi: 10.1016/j.anifeedsci.2007.06.037. [DOI:10.1016/j.anifeedsci.2007.06.037]
16. He, M.L., J. Long, Y. Wang, G, Penner and T.A. McAllister. 2015. Effect of replacing barley with wheat grain in finishing feedlot diets on nutrient digestibility, rumen fermentation, bacterial communities and plasma metabolites in beef steers. Livestock Science, 176: 104-110. doi: 10.1016/j.livsci.2015.03.024. [DOI:10.1016/j.livsci.2015.03.024]
17. Jaramillo-López, E., M.F. Itza-Ortiz, G. Peraza-Mercado and J.M. Carrera-Chávez. 2017. Ruminal acidosis: strategies for its control. Austral journal of veterinary sciences, 49(3): 139-148. doi: 10.4067/S0719-81322017000300139. [DOI:10.4067/S0719-81322017000300139]
18. Khadem, A.A., M. Pahlavan, A. Afzalzadeh and M. Rezaeian. 2007. Effects of live Yeast Saccharomyces cerevisiae on fermentation parameters and microbial populations of rumen, total tract digestibility of diet nutrients and on in situ degradability of Alfafa hay in Iranian Chall sheep. Pakistan Journal of Biological Sciences, 10(4): 590-597. doi: 10.3923/pjbs.2007.590.597 PMID: 19069540.‌ [DOI:10.3923/pjbs.2007.590.597]
19. Khliji, S., R. Van de Ven, T.A. Lamb, M. Lanza and D.L. Hopkins. 2010. Relationship between consumer ranking of lamb colour and objective measures of colour. Meat Science, 85(2): 224-229. doi: 10.1016/j.meatsci.2010.01.002 PMID: 20374889(35). [DOI:10.1016/j.meatsci.2010.01.002]
20. Khorasani, G.R. and J.J. Kennelly. 2001. Influence of carbohydrate source and buffer on rumen fermentation characteristics, milk yield, and milk composition in late-lactation Holstein cows. Journal of dairy Science, 84: 1707-1716. doi: 10.3168/jds.S0022-0302(01)74606-1 PMID: 11467821(25). [DOI:10.3168/jds.S0022-0302(01)74606-1]
21. Khorasani, O., M. Chaji and F. Baghban. 2021. The effect of ruminal pH adjusting additives on some meat quality parameters in fattening lambs fed a high concentrate diet. Research On Animal Production (Scientific and Research), 12(32): 50-60 (In Persian). [DOI:10.52547/rap.12.32.50]
22. Khorasani, O., M. Chaji and F. Baghban. 2020. Comparison of the effect of sodium bicarbonate buffer with Megasphaera elsdenii as a rumen-consuming acid on growth performance, digestibility, rumen and blood parameters of lambs in high concentrate. Iranian Journal of animal Science, 30(2): 85-99.‌ doi: 10.22034/AS.2020.11494(8).
23. Khorasani, O., M. Chaji, and F. Baghban, 2021. Effect of chemical buffer and Megasphaera elsdenii-yeast on histomorphometry and histopathology of rumen and liver of Arabian fattening lambs fed with concentrated diets. Animal Production, 23(1): 47-59.‌
24. Luo, J., C.S. Ranadheera, S. King, C. Evans and S. Baines. 2017. In vitro investigation of the effect of dairy propionibacteria on rumen pH, lactic acid and volatile fatty acids. Journal of integrative agriculture, 16: 1566-1575. doi: 10.1016/S2095-3119(16)61556-3 PMID: 27824275(2). [DOI:10.1016/S2095-3119(16)61556-3]
25. Mahdavirad, N., M. Chaji, M. Bojarpour and M. Dehghanbanadaky. 2021. Comparison of the effect of sodium bicarbonate, sodium sesquicarbonate, and zeolite as rumen buffers on apparent digestibility, growth performance and rumen fermentation parameters of Arabi lambs. Tropical Animal Health and Production, 53: 465. doi: 10.1007/s11250-021-02909-7 PMID: 34546468(18). [DOI:10.1007/s11250-021-02909-7]
26. Malekkhahi, M., A.M. Tahmasbi, A.A. Naserian, M. Danesh-Mesgaran, J.L. Kleen, O. AlZahal and M.H. Ghaffari. 2016. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites and milk production in dairy cows. Animal Feed Science and Technology, 213: 29-43. doi: 10.1016/j.anifeedsci.2015.12.018(21). [DOI:10.1016/j.anifeedsci.2015.12.018]
27. Moeini, M.M., W. Mohamadi Chapdareh and M, Sori. 2017. The effect of supplementing Rumenobuffer, Sodium bicarbonate and mixed herbs on acidosis, VFA, blood parameters and performance of fattening Kurdy lambs. Journal of Ruminant Research, 5(2): 87-100. (In Persian). doi: 10.22069/EJRR.2017.13417.1558(20)
28. Mohammadabadi, T., M. Gheibipour, H. Motamedi, M. Chaji and B.A. Abbas. 2021. Isolation and identification of tannin-degrading bacteria from deer gut and potency for improving nutritional value of tannin rich plants. Journal Homepage, 17(1): 65-75. doi: ‌10.22055/IVJ.2021.257994.2322.
29. Mohammadabadi, T., M.A. Bakhtiari and P. Alimirzaei. 2018. Isolation and identification of Lactate-Producing and utilizing bacteria from the rumen of najdi goats. Indian Journal of Small Rumin, 24(2): 276-280. doi: 10.5958/0973-9718.2018.00056.9. [DOI:10.5958/0973-9718.2018.00056.9]
30. Nourouzi, M., Mezerji, F. and M. Danesh Mesgaran. 2005. The effect of live yeast (Saccharomyces Cerevisiae-1026) on rumen fermentation parameters and blood metabolites of sheep. Proceedings of the British Society of Animal Science, 9)4(: 197-213. doi: 10.1017/S1752756200010693(30). [DOI:10.1017/S1752756200010693]
31. NRC. 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. National Academy Press Washington DC. (13).
32. Omidi, S., M. Ebrahimi, H. Janmohammadi, H. Taghipour, S.H. Peighambardust and H. Ghassemzadeh. 2019. The effect of in ovo injection with different L-Arginine levels on hatchability, growth, performance and meat quality of ross 308 broiler chickens. Research on Animal Production, 10(25): 69-78. [DOI:10.29252/rap.10.25.69]
33. Pasbani, E. and S. Amiri. 2017. Evaluating the effect of Aleo Vera gel coating and solid lipid nano-particles containing Thymol Seed (Carum Copticum) essential oil on shelf life of fresh beef. Iranian Journal of Nutrition Sciences and Food Technology, 12)2 :( 75-86. doi: http://nsft.sbmu.ac.ir/article-1-2109(32).
34. Pourabbasali, N., N.M. Torbatinejad, S. Hasani and A. Gharahbash. 2007. Study of the effect Saccharomyces cerevisiae yeast on fattening performance and blood metabolites of Atabai lambs. Journal of Agriculture of Science Natural Resources, 14(3): 89-97. doi: https://www.sid.ir/fa/journal/ViewPaper.aspx?id=67261(In Persian).
35. Rostamzadeh, P., A. Taghizadeh, A, Hoseein Khani, G.h. Moghaddam. 2015. Effects of saccharomyces cerevisiae yeast on digestibility of finishing diets, ruminal and blood metabolites in sheep. Journal of Animal Sciences, 25(2): 175-188. (In Persian).
36. Russell, K.E. and A.J. Roussel. 2007. Evaluation of the ruminant serum chemistry profile. Veterinary Clinics of North America: Food Animal Practice, 23(3): 403-426. doi: 10.1016/j.cvfa.2007.07.003(31) [DOI:10.1016/j.cvfa.2007.07.003]
37. Sedighi, R. and D. Alipour. 2019. Assessment of probiotic effects of isolated Megasphaera elsdenii strains in Mehraban sheep and Holstein lactating cows. Animal Feed Science and Technology, 248: 126-131. doi: 10.1016/j.anifeedsci.2019.01.007(6). [DOI:10.1016/j.anifeedsci.2019.01.007]
38. Suman, S.P., M.C. Hunt, M.N. Nair and G. Rentfrow. 2014. Improving beef color stability: Practical strategies and underlying mechanisms. Meat Science. 98: 490-504. doi: 10.1016/j.meatsci.2014.06.032 PMID: 25041654(33). [DOI:10.1016/j.meatsci.2014.06.032]
39. Van Soest, P.J., J.B. Rabertson and B.A. Lewis. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of dairy Science, 74(10): 3583-3597. doi: 10.3168/jds.S0022-0302(91)78551-2 PMID: 1660498(17). [DOI:10.3168/jds.S0022-0302(91)78551-2]
40. Zali, A., S.M. Nasrollahi and S. Khodabandelo. 2019. Effects of two new formulas of dietary buffers with a high buffering capacity containing Na or K on performance and metabolism of mid-lactation dairy cows. Preventive veterinary medicine, 163: 87-92. doi: 10.1016/j.prevetmed.2019.01.003 PMID: 30670191(7). [DOI:10.1016/j.prevetmed.2019.01.003]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb