1. Abbasi, A., Hashemi, S., Hassani, S., & Ebrahimi, M. (2018). Gastrointestinal microbial population response and performance of broiler chickens fed with organic acids and silver nanoparticles coated on zeolite under heat stress condition. Iranian Journal of Applied Animal Science, 8(4), 685-691.
2. Ahmadi, F., Khah, M. M., Javid, S., Zarneshan, A., Akradi, L., & Salehifar, P. (2013). The effect of dietary silver nanoparticles on performance, immune organs, and lipid serum of broiler chickens during starter period. International Journal of Biosciences, 3(5), 95-100. doi.org/10.12692/ijb/3.5.95-100. [
DOI:10.12692/ijb/3.5.95-100]
3. Bolandi, N., Hashemi, S. R., Davoodi, D., Dastar, B., Hassani, S., & Ashayerizadeh, A. (2021). Performance, intestinal microbial population, immune and physiological responses of broiler chickens to diet with different levels of silver nanoparticles coated on zeolite. Italian Journal of Animal Science, 20(1), 497-504. doi.org/10.1080/1828051X.2021.1892546. [
DOI:10.1080/1828051X.2021.1892546]
4. Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71. doi.org/10.1116/1.2815690. [
DOI:10.1116/1.2815690]
5. Celik, S., & Erdogan, S. (2008). Caffeic acid phenethyl ester (CAPE) protects brain against oxidative stress and inflammation induced by diabetes in rats. Molecular and cellular biochemistry, 312, 39-46. doi.org/10.1007/s11010-008-9719-3. [
DOI:10.1007/s11010-008-9719-3]
6. Choi, O., Clevenger, T. E., Deng, B., Surampalli, R. Y., Ross Jr, L., & Hu, Z. (2009). Role of sulfide and ligand strength in controlling nanosilver toxicity. Water research, 43(7), 1879-1886. doi.org/10.1016/j.watres.2009.01.029. [
DOI:10.1016/j.watres.2009.01.029]
7. Felehgari, K., Ahmadi, F., Rokhzadi, A., Kurdestany, A. H., & Khah, M. M. (2013). The effect of dietary silver nanoparticles and inorganic selenium supplementation on performance and digestive organs of broilers during starter period. Bull. Env. Pharmacol. Life Sci, 2(8), 104-108.
8. Fischer, U., & Schulze-Osthoff, K. (2005). New approaches and therapeutics targeting apoptosis in disease. Pharmacological reviews, 57(2), 187-215. doi.org/10.1124/pr.57.2.6. [
DOI:10.1124/pr.57.2.6]
9. Ghooshchian, M., Khodarahmi, P., & Tafvizi, F. (2016). Expression of apoptosis-related genes bcl-2 and bax in rat brain hippocampus, followed by intraperitoneal injection of nanosilver. ISMJ, 19(2), 185-193. Doi.org/10.18869/acadpub.ismj.19.2.185. [
DOI:10.18869/acadpub.ismj.19.2.185]
10. Ghooshchian, M., Khodarahmi, P., & Tafvizi, F. (2017). Apoptosis-mediated neurotoxicity and altered gene expression induced by silver nanoparticles. Toxicology and industrial health, 33(10), 757-764. doi.org/10.1177/0748233717719195. [
DOI:10.1177/0748233717719195]
11. Gissen, P., & Arias, I. M. (2015). Structural and functional hepatocyte polarity and liver disease. Journal of hepatology, 63(4), 1023-1037. doi.org/10.1016/j.jhep.2015.06.015. [
DOI:10.1016/j.jhep.2015.06.015]
12. Hashemi, S., Davoodi, D., & Dastar, B. (2017). Effect of clinoptilolite coated with silver nanoparticles on meat quality attributes of broiler chickens during frozen storage. Iranian Journal of Applied Animal Science, 7(2), 321-328.
13. Hashemi, S., Davoodi, D., Dastar, B., Bolandi, N., Smaili, M., & Mastani, R. (2014). Meat quality attributes of broiler chickens fed diets supplemented with silver nanoparticles coated on zeolite. Poultry Science Journal, 2(2), 183-193.
14. Hashemi, S., & Davoodi, H. (2012). Herbal plants as new immuno-stimulator in poultry industry: a review. Asian Journal of Animal and Veterinary Advances, 7(2), 105-116. Doi.org/ 10.3923/ajava.2012.105.116. [
DOI:10.3923/ajava.2012.105.116]
15. Hildeman, D. A., Mitchell, T., Aronow, B., Wojciechowski, S., Kappler, J., & Marrack, P. (2003). Control of Bcl-2 expression by reactive oxygen species. Proceedings of the National Academy of Sciences, 100(25), 15035-15040. doi.org/10.1073/pnas.1936213100. [
DOI:10.1073/pnas.1936213100]
16. Hoet, P. H., Brüske-Hohlfeld, I., & Salata, O. V. (2004). Nanoparticles-known and unknown health risks. Journal of nanobiotechnology, 2, 1-15. doi.org/10.1186/1477-3155-2-12. [
DOI:10.1186/1477-3155-2-12]
17. Huang, X., Wang, F., Chen, W., Chen, Y., Wang, N., & von Maltzan, K. (2012). Possible link between the cognitive dysfunction associated with diabetes mellitus and the neurotoxicity of methylglyoxal. Brain Research, 1469, 82-91. doi.org/10.1016/j.brainres.2012.06.011. [
DOI:10.1016/j.brainres.2012.06.011]
18. Khorasani, N., Baharara, J., Iranbakhsh, A., & Ramezani, T. (2016). Apoptotic effects of silver nanoparticles coated with Zataria multiflora leaves extract on HepG2 cell line. KAUMS Journal (FEYZ), 19(6), 457-467.
19. Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W., & Maniratanachote, R. (2010). Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Particle and fibre toxicology, 7(1), 1-9. doi.org/10.1186/1743-8977-7-8. [
DOI:10.1186/1743-8977-7-8]
20. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 25(4), 402-408. doi.org/10.1006/meth.2001.1262. [
DOI:10.1006/meth.2001.1262]
21. Loghman, A., Iraj, S. H., Naghi, D. A., & Pejman, M. (2012). Histopathologic and apoptotic effect of nanosilver in liver of broiler chickens. African Journal of Biotechnology, 11(22), 6207-6211. Doi.org/10.5897/AJB11.1768. [
DOI:10.5897/AJB11.1768]
22. Mohanraj, V., & Chen, Y. (2006). Nanoparticles-a review. Tropical journal of pharmaceutical research, 5(1), 561-573. Doi.org/10.4314/tjpr.v5i1.14634. [
DOI:10.4314/tjpr.v5i1.14634]
23. Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. science, 311(5761), 622-627. Doi.org/10.1126/science.1114397. [
DOI:10.1126/science.1114397]
24. Podestà, F., Romeo, G., Liu, W.-H., Krajewski, S., Reed, J. C., Gerhardinger, C., & Lorenzi, M. (2000). Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. The American journal of pathology, 156(3), 1025-1032. Doi.org/10.1016/S0002-9440(10)64970-X. [
DOI:10.1016/S0002-9440(10)64970-X]
25. Raff, M. C. (1992). Social controls on cell survival and cell death. Nature, 356(6368), 397-400. doi.org/10.1038/356397a0. [
DOI:10.1038/356397a0]
26. Rezazadeh-Reyhani, Z., Razi, M., Malekinejad, H., & Sadrkhanlou, R. (2015). Cytotoxic effect of nanosilver particles on testicular tissue: evidence for biochemical stress and Hsp70-2 protein expression. Environmental toxicology and Pharmacology, 40(2), 626-638. 10.1016/j.etap.2015.08.024. [
DOI:10.1016/j.etap.2015.08.024]
27. Ricci, M. S., & Zong, W.-X. (2006). Chemotherapeutic approaches for targeting cell death pathways. The oncologist, 11(4), 342-357. Doi.org/10.1634/theoncologist.11-4-342. [
DOI:10.1634/theoncologist.11-4-342]
28. Ricke, S. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry science, 82(4), 632-639. doi.org/10.1093/ps/82.4.632. [
DOI:10.1093/ps/82.4.632]
29. Roth, F., & Kirchgessner, M. (1998). Organic acids as feed additives for young pigs: Nutritional and gastrointestinal effects. J. Anim. Feed Sci, 7(Suppl 1), 25-33. [
DOI:10.22358/jafs/69953/1998]
30. SAS Institute, Inc. SAS user's guide. 6thed. SAS Institute Inc. Cary, NC. 1989.
31. Sadoughi, S. (2017). Effect of crocin on Bax/Bcl-2 ratio, lipid peroxidation and antioxidant enzymes activity in liver tissue of chick embryo treated with silver nanoparticles. Internal Medicine Today, 23(4), 293-299.
32. Sanaei, M., & Kavoosi, F. (2021). Effect of valproic acid on extrinsic (DR4, DR5, FAS, FAS-L, TRAIL) and intrinsic (BAX, BAK and APAF1, Bcl-2, and Bcl-xL) apoptotic pathways, cell viability and apoptosis in hepatocellular carcinoma PLC/PRF5 cell line. Feyz, Journal of Kashan University of Medical Sciences, 24(6), 601-609.
33. Seyedalipour, B., Arefifar, A., Khanbabaee, R., & Hoseini, S. M. (2015). Toxicity investigating of silver nanoparticles on ALT, AST, ALP and histopathological changes in NMRI mice. Journal of Mazandaran University of Medical Sciences, 25(124), 183-193.
34. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of colloid and interface science, 275(1), 177-182. doi.org/10.1016/j.jcis.2004.02.012. [
DOI:10.1016/j.jcis.2004.02.012]
35. Soto, K., Carrasco, A., Powell, T., Garza, K., & Murr, L. (2005). Comparative in vitro cytotoxicity assessment of some manufacturednanoparticulate materials characterized by transmissionelectron microscopy. Journal of Nanoparticle Research, 7, 145-169. doi.org/10.1007/s11051-005-3473-1. [
DOI:10.1007/s11051-005-3473-1]
36. Soto, K., Murr, L., & Garza, K. (2008). Cytotoxic responses and potential respiratory health effects of carbon and carbonaceous nanoparticulates in the Paso del Norte airshed environment. International journal of environmental research and public health, 5(1), 12-25. doi.org/10.3390/ijerph5010012. [
DOI:10.3390/ijerph5010012]
37. Sun, J., Zhang, Q., Wang, Z., & Yan, B. (2013). Effects of nanotoxicity on female reproductivity and fetal development in animal models. International journal of molecular sciences, 14(5), 9319-9337. doi.org/10.3390/ijms14059319. [
DOI:10.3390/ijms14059319]
38. Tang, J., & Xi, T. (2008). Status of biological evaluation on silver nanoparticles. Sheng wu yi xue gong cheng xue za zhi= Journal of biomedical engineering= Shengwu yixue gongchengxue zazhi, 25(4), 958-961