دوره 14، شماره 39 - ( بهار 1402 )                   جلد 14 شماره 39 صفحات 20-10 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bozorgtabar P, Kazemifard M, Rezaei M, Mehraban P. (2023). Effect of Superworm Bioactive Peptides on Performance, Morphology and Microbial Population of Intestine and Immune Responses in Broiler Chickens. rap. 14(39), 10-20. doi:10.61186/rap.14.39.10
URL: http://rap.sanru.ac.ir/article-1-1303-fa.html
بزرگتبار پرند، کاظمی فرد محمد، رضایی منصور، مهربان پویان. اثر پپتیدهای زیست فعال سوپرورم بر عملکرد، ریخت شناسی و جمعیت میکروبی روده و پاسخ های ایمنی در جوجه های گوشتی پژوهشهاي توليدات دامي 1402; 14 (39) :20-10 10.61186/rap.14.39.10

URL: http://rap.sanru.ac.ir/article-1-1303-fa.html


دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (1376 مشاهده)
چکیده مبسوط
مقدمه و هدف: استفاده از آنتی­بیوتیک­ ها در تغذیه طیور علاوه بر اهمیت آن­ها در پیشگیری از بیماری­ ها، باعث افزایش روز افزون ناهنجاری ­های مادرزادی، بیماری­ های مزمن، افزایش مقاومت میکروبی و صدها عارضه کوچک و بزرگ دیگر که به ­عنوان معضلات بهداشت کنونی جامعه بشری مطرح است، می ­باشد. تمرکز بر رفاه حیوانات، مراقبت از محیط زیست، استفاده محدود از داروها و تولید یک محصول سالم بدون باقی‌مانده‌های شیمیایی که سلامت انسان را به خطر نیاندازد همیشه مورد توجه بوده است. یکی از جایگزین­ های مناسب برای آنتی­بیوتیک­ ها، به پپتیدهای زیست فعال می­ توان اشاره کرد.
مواد و روش­ ها: این آزمایش در قالب طرح کاملاً تصادفی با 240 قطعه جوجه گوشتی نر یک روزه سویه تجاری راس 308، در شش تیمار،  پنج تکرار (هشت قطعه جوجه در هر تکرار) استفاده شد. تیمارهای آزمایشی شامل: جیره پایه، جیره پایه + 0/1 درصد ویتامین E و 0/05 درصد مادورامایسین، جیره پایه + 0/05 درصد مادورامایسین، جیره پایه + 200 میلی­ گرم در کیلوگرم پپتید سوپرورم، جیره پایه +400 میلی­ گرم در کیلوگرم پپتید سوپرورم  و جیره پایه + 600 میلی­ گرم در کیلوگرم پپتید سوپرورم بودند. اثر تیمارها بر عملکرد، جمعیت میکروبی، ریخت­ شناسی روده و پاسخ سیستم ایمنی جوجه ­های گوشتی بررسی شد.
یافته ­ها: افزودن مادورامایسین (تیمار 3) و  پپتید سوپرورم در سطوح 200، 400 و 600 میلی­ گرم به جیره در مقایسه با گروه شاهد توانسته است مصرف خوراک را  در دوره پایانی کاهش دهد. از طرفی تیمارهایی که آنتی بیوتیک مصرف کردند، در مقایسه با تیمار 5 که حاوی 400 میلی ­گرم پپتید سوپرورم بود توانسته است جمعیت باکتری­­ های کل را کاهش دهد. اضافه کردن همه سطوح پپتید زیست فعال سوپرورم به جیره سبب کاهش قطر کریپت در مقایسه با گروه شاهد شد و همچنین جیره حاوی 400 میلی­ گرم از پپتید سوپرورم باعث کاهش عمق کریپت در مقایسه با گروه شاهد شد. نتایج به­ دست آمده در رابطه با فاکتورهای ایمنی می­ توان بیان کرد که با افزودن آنتی­بیوتیک به جیره، می­تواند فاکتور­های ایمنی از جمله ایمنوگلوبولین G در سن 35 روزگی در مقایسه با گروه شاهد افزایش دهد، همچینین پپتید سوپرورم در غلطت 400 و 600 میلی­ گرم به جیره توانسته است تیتر کل SRBC در سن 42 روزگی در مقایسه با گروه شاهد بهبود دهد.
نتیجه­ گیری: نتایج این آزمایش نشان داد که تیمارهای آزمایشی توانست شاخص­ های عملکردی را در سن 11 تا 42 روزگی و برخی از صفات ریخت­ شناسی ژژنوم مانند: عمق و قطر کریپت را بهبود دهد. همچنین می­ توان بیان کرد که اثر تیمارهای آزمایشی بر جمعیت باکتری کل و لاکتوباسیل و سطح ایمونوگلوبولین G (روز 35) و تیتر کل SRBC (روز 42) معنی­ دار بود.
متن کامل [PDF 2167 kb]   (499 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه طیور
دریافت: 1401/2/13 | ویرایش نهایی: 1402/3/9 | پذیرش: 1401/3/23 | انتشار: 1402/3/9

فهرست منابع
1. Abdollahi, M.R., F. Zaefarian, Y. Gu, W. Xiao, J. Jia and V. Ravindran. 2017. Influence of soybean bioactive peptides on growth performance, nutrient utilization, digestive tract development and intestinal histology in broilers. Journal of Applied Animal Nutrition, 5: 231-260. [DOI:10.1017/JAN.2017.6]
2. Aguilar-Toalá, J.E., L. Santiago-López, C.M. Peres, C. Peres, H.S. Garcia, B. Vallejo-Cordoba, A.F. González-Córdova and A. Hernández-Mendoza. 2017. Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. Journal of Dairy Science, 100(1): 65-75. [DOI:10.3168/jds.2016-11846]
3. Alexander, T.W., L.J. Yanke, E. Topp, M.E. Olson, R.R. Read, D.W. Morck and T.A. McAllister. 2008. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle. Applied and Environmental Microbiology, 74(14): 4405-4416. [DOI:10.1128/AEM.00489-08]
4. Ashaolu, T.J. 2020. Soy bioactive peptides and the gut microbiota modulation. Applied microbiology and biotechnology, 104(21): 9009-9017.‌ [DOI:10.1007/s00253-020-10799-2]
5. Ballitoc, D.A. and S. Sun. 2013. Ground yellow mealworms (Tenebrio molitor L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Sci. Repos. Agric, e23050425.
6. Bao, H., R. She, T. Liu, Y. Zhang, K.S. Peng, D. Luo and L. Zhai. 2009. Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poultry Science, 88(2): 291-297.‌ [DOI:10.3382/ps.2008-00330]
7. Beaumont, M., K.J. Portune, N. Steuer, A. Lan, V. Cerrudo, M. Audebert and F. Blachier. 2017. Quantity and source of dietary protein influence metabolite production by gut microbiota and rectal mucosa gene expression: a randomized, parallel, double-blind trial in overweight humans. The American Journal of Clinical Nutrition, 106(4): 1005-1019.‌ [DOI:10.3945/ajcn.117.158816]
8. Bradley, G.L., T.F. Savage and K.I. Timm. 1994. The effects of supplementing diets with Saccharomyces cervisiae var. boulardi on male poult performance and ileal morphology. Poultry Science, 73: 1766-1770. [DOI:10.3382/ps.0731766]
9. Brenes, A. and E. Roura. 2010. Essential oils in poultry nutrition: Main effects and modes of action. Animal Feed Science and Technology, 158(1): 1-14. [DOI:10.1016/j.anifeedsci.2010.03.007]
10. Buchanan, N.P., J.M. Hott, S.E. Cutlip, A.L. Rock, A. Asamer and J.S. Moritz. 2008. The effects of a natural antibiotic alternative and a natural growth promoter feed additive on broiler performance and carcass quality. The Journal of Applied Poultry Research, 17(2): 202-210. [DOI:10.3382/japr.2007-00038]
11. Cheema, A., F. Bari and O. Saddique. 2003. Corporate governance in Pakistan: Ownership, control and the law. Lahore University of Management Sciences, Lahore, 5.
12. Cheng, K., Z.H. Song, X.C. Zheng, H. Zhang, J.F. Zhang, L.L. Zhang and T. Wang. 2017. Effects of dietary vitamin E type on the growth performance and antioxidant capacity in cyclophosphamide immunosuppressed broilers. Poultry Science, 96(5): 1159-1166.‌ [DOI:10.3382/ps/pew336]
13. Choi, S.C., S.L. Ingale, J.S. Kim, Y.K. Park, I.K. Kwon and B.J. Chae. 2013. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. British Poultry Science, 54(6): 738-746.‌ [DOI:10.1080/00071668.2013.838746]
14. Feng, J., X. Liu, Z.R. Xu, Y.Z. Wang and J.X. Liu. 2007. Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poultry Science, 86(6): 1149-1154. [DOI:10.1093/ps/86.6.1149]
15. Gauthier, S.F. and Y. Pouliot. 2003. Functional and biological properties of peptides obtained by enzymatic hydrolysis of whey proteins. Journal of Dairy Science, 86: E78-E87. [DOI:10.3168/jds.S0022-0302(03)74041-7]
16. Hancock, R.E. and H.G. Sahl. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24(12): 1551-1557. [DOI:10.1038/nbt1267]
17. Hosseini, S.J., H. Kermanshahi, H. Nassirimoghaddam, A. Nabipour, M.T. Mirakzeh, H. Saleh and M. Kazemifard. 2016. Effects of 1.25-dihydroxycholecalciferol and hydroalcoholic extract of Withania coagulans fruit on bone mineralization and mechanical and histological properties of male broiler chickens. Brazilian Journal of Poultry Science, 18: 73-86. [DOI:10.1590/18069061-2015-0016]
18. Hou, Y., Z. Wu, Z. Dai, G. Wang and G. Wu. 2017. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides and functional significance. Journal of Animal Science and Biotechnology, 8(1): 1-13. [DOI:10.1186/s40104-017-0153-9]
19. Kaiser, M.G., S.S. Block, C. Ciraci, W. Fang, M. Sifri and S.J. Lamont. 2012. Effects of dietary vitamin E type and level on lipopolysaccharide-induced cytokine mRNA expression in broiler chicks. Poultry Science, 91(8): 1893-1898. [DOI:10.3382/ps.2011-02116]
20. Kamnerdpetch, C., M. Weiss, C. Kasper and T. Scheper. 2007. An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme and Microbial Technology, 40(4): 508-514. [DOI:10.1016/j.enzmictec.2006.05.006]
21. Karimzadeh, S., M. Rezaei and A. Teomouri Yansari. 2016. Effects of bioactive peptides derived from canola meal on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology and gut microflora in broiler chickens. Poultry Science Journal, 4: 27-36.
22. Landy, N., F. Kheiri and M. Faghani. 2020. Evaluation of cottonseed bioactive peptides on growth performance, carcase traits, immunity, total antioxidant activity of serum and intestinal morphology in broiler chickens. Italian Journal of Animal Science, 19(1): 1375-1386. [DOI:10.1080/1828051X.2020.1844085]
23. Lewis, E.D., S.N. Meydani and D. Wu. 2019. Regulatory role of vitamin E in the immune system and inflammation. IUBMB life, 71(4): 487-494. [DOI:10.1002/iub.1976]
24. Lin, S., Y. Jin, M. Liu, Y., Yang, M. Zhang, Y. Guo and Y. Yin. 2013. Research on the preparation of antioxidant peptides derived from egg white with assisting of high-intensity pulsed electric field. Food Chemistry, 139(1): 300-306. [DOI:10.1016/j.foodchem.2013.01.048]
25. Ma, N. and Ma, X. 2019. Dietary amino acids and the gut‐microbiome‐immune axis: physiological metabolism and therapeutic prospects. Comprehensive Reviews in Food Science and Food Safety, 18(1): 221-242.‌ [DOI:10.1111/1541-4337.12401]
26. McCalla, J. T., Waugh and E. Lohry. 2010. Protein Hydrolysates/Peptides in Animal Nutrition. Protein Hydrolysates in Biotechnology, 179-190. [DOI:10.1007/978-1-4020-6674-0_10]
27. Melis, R., A. Braca, G. Mulas, R. Sanna, S. Spada, G. Serra and R. Anedda. 2018. Effects of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative food science and emerging technologies, 48: 138-149. [DOI:10.1016/j.ifset.2018.06.003]
28. Mohammadrezaei, M., B. Navidshad, A. Gheisari and M. Toghyani. 2021. Cottonseed meal bioactive peptides as an alternative to antibiotic growth promoters in broiler chicks. International Journal of Peptide Research and Therapeutics, 27(1): 329-340. [DOI:10.1007/s10989-020-10086-8]
29. Montagne, L., J.R. Pluske and D.J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108(1-4): 95-117.‌ [DOI:10.1016/S0377-8401(03)00163-9]
30. Moriguchi, S. and M. Muraga. 2000.Vitamin E and immunity. Vitamins and hormones, 59(2000): 305-336. [DOI:10.1016/S0083-6729(00)59011-6]
31. Motarjemi, Y., G. Moy and E. Todd (Eds.). 2013. Encyclopedia of food safety. Academic Press.‌
32. Nie, C., W. Zhang, W. Ge, Y. Wang, Y. Liu and J. Liu. 2015. Effects of fermented cottonseed meal on the growth performance, apparent digestibility, carcass traits, and meat composition in yellow-feathered broilers. Turkish Journal of Veterinary and Animal Sciences, 39(3): 350-356.‌ [DOI:10.3906/vet-1410-65]
33. Osho, S.O. W.W. Xiao and O. Adeola. 2019. Response of broiler chickens to dietary soybean bioactive peptide and Coccidia Challenge. Poultry Science, 98(11): 5669-5678.‌ [DOI:10.3382/ps/pez346]
34. Osho, S.O., W.W. Xiao and O. Adeola. 2019. Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge. Poultry Science, 98(11): 5669-5678.‌ [DOI:10.3382/ps/pez346]
35. Pasupuleti, V.K. and S. Braun. 2008. State of the art manufacturing of protein hydrolysates. V: Protein hydrolysates in Biotechnology, 11-32.‌ [DOI:10.1007/978-1-4020-6674-0_2]
36. Pirsaraei, Z.A., A.A. Saki, M. Kazemi Fard and H. Saleh. 2011. Effect of dietary tallow level on broiler breeder performance and hatching egg characteristics. Journal of Animal and Veterinary Advances, 10(2011): 1287-1291. [DOI:10.3923/javaa.2011.1287.1291]
37. Pietras, M., S. Orczewska-Dudek, W. Szczurek and M. Pieszka. 2021. Effect of dietary lupine seeds (Lupinus luteus L.) and different insect larvae meals as protein sources in broiler chicken diet on growth performance, carcass, and meat quality. Livestock Science, 250: 104-537. [DOI:10.1016/j.livsci.2021.104537]
38. PourReza, J., G.A. Sadeghi, and M. Mehri. 2006. Scott's Nutrition of the chicken (translator), Publisher: Ardakan Danesh.
39. Ramos-Elorduy, J., E., Avila Gonzalez, A. Rocha Hernandez and J.M. Pino. 2002. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of Economic Entomology, 95: 214-220. [DOI:10.1603/0022-0493-95.1.214]
40. Rezaei, M., M.K. Torshizi and Y. Rouzbehan. 2011. The influence of different levels of micronized insoluble fiber on broiler performance and litter moisture. Poultry Science, 90(9): 2008-2012.‌ [DOI:10.3382/ps.2011-01352]
41. Sakamoto, K., H. Hirose, A. Onizuka, M. Hayashi, N. Futamura, Y. Kawamura and T. Ezaki. 2000. Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. Journal of Surgical Research, 94(2): 99-106. [DOI:10.1006/jsre.2000.5937]
42. Salavati, M.E., V. Rezaeipour, R. Abdullahpour and N. Mousavi. 2020. Effects of graded inclusion of bioactive peptides derived from sesame meal on the growth performance, internal organs, gut microbiota and intestinal morphology of broiler chickens. International Journal of Peptide Research and Therapeutics, 26(3): 1541-1548. [DOI:10.1007/s10989-019-09947-8]
43. Shojadoost, B., A. Yitbarek, M. Alizadeh, R.R. Kulkarni, J. Astill, N. Boodhoo and S. Sharif. 2021. Centennial Review: Effects of vitamins A, D, E, and C on the chicken immune system. Poultry Science, 100(4): 930-1000. [DOI:10.1016/j.psj.2020.12.027]
44. Tang, J.W. H. Sun, X.H. Yao, Y.F. Wu, X. Wang and J. Feng. 2012. Effects of replacement of soybean meal by fermented cottonseed meal on growth performance, serum biochemical parameters and immune function of yellow-feathered broilers. Asian-Australasian Journal of Animal Sciences, 25(3): 393-399. [DOI:10.5713/ajas.2011.11381]
45. Tang, Z., Y. Yin, Y. Zhang, R. Huang, Z. Sun, T. Li and Q. Tu. 2008. Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin-lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. British Journal of Nutrition, 101(7): 998-1005.‌ [DOI:10.1017/S0007114508055633]
46. Wu, G., F.W. Bazer and H.R. Cross. 2014. Land-based production of animal protein: impacts, efficiency, and sustainability. Annals of the New York Academy of sciences, 1328(1): 18-28. [DOI:10.1111/nyas.12566]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb