دوره 12، شماره 34 - ( زمستان 1400 )                   جلد 12 شماره 34 صفحات 88-78 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yekani V, khalilvandi-behroozyar H, Pirmohammadi R, Donyadoost chalan M, mohtashami B. (2021). Production and Evaluation of Bioactive Peptides Resulting from Hydrolysis of Chicken Meat Waste and Whey Powder Through Autoclave and Bio-Fermentation Process. rap. 12(34), 78-88. doi:10.52547/rap.12.34.78
URL: http://rap.sanru.ac.ir/article-1-1179-fa.html
یکانی وحید، خلیلوندی بهروزیار حامد، پیرمحمدی رسول، دنیادوست چلان مریم، محتشمی بهرام. تولید و ارزیابی پپتیدهای زیست فعال حاصل از هیدرولیز ضایعات گوشت مرغ و پودر آب ‌پنیر با استفاده از اتوکلاو و فرآیند تخمیر زیستی پژوهشهاي توليدات دامي 1400; 12 (34) :88-78 10.52547/rap.12.34.78

URL: http://rap.sanru.ac.ir/article-1-1179-fa.html


دانشگاه ارومیه
چکیده:   (2334 مشاهده)

چکیده مبسوط

مقدمه و هدف: ضایعات گوشت مرغ و پودر آب پنیر به عنوان محصولات جانبی اغلب سرشار از پروتئین های با کیفیت بالا هستند و می توانند توسط آنزیم های پروتئازی تولید شده توسط میکروارگانیسم ها، هیدرولیز شوند. این پژوهش، با هدف تولید پپتیدهای زیست فعال از ضایعات گوشت مرغ و پودر آب‌پنیر، از طریق تخمیر زیستی توسط باکتری‌های باسیلوس سابتلیس، باسیلوس لیکنیفورمیس، قارچ آسپرژیلوس اورایزا، و هیدرولیز توسط اتوکلاو، انجام پذیرفت. هم‌چنین، ارزیابی منابع پروتئینی ایزوله و هیدرولیز شده در شرایط آزمایشگاهی صورت گرفت.
مواد و روش‌ها: ضایعات گوشت مرغ ابتدا چربی‌گیری شده و سپس از طریق فرآیند استخراج قلیایی و رسوب اسیدی، پروتئین آن جداسازی شد. میکروارگانیسم‌ها نیز در محیط کشت اختصاصی، کشت داده شده و سپس به پروتئین جداسازی شده در مرحله قبل، افزوده شدند و فرآیند هیدرولیز تخمیری‌ انجام گرفت. هم‌چنین از دستگاه اتوکلاو نیز برای انجام هیدرولیز استفاده شد. منابع پروتئین جداسازی شده و هیدرولیز شده، برای تعیین مقادیر پروتئین خام، ماده آلی، خاکستر، ماده خشک، عصاره اتری، و میزان گاز تولیدی در شرایط برون تنی، مورد ارزیابی آزمایشگاهی قرار گرفتند. درنهایت، داده‌های حاصل از ارزیابی آزمایشگاهی با استفاده از مدل آماری طرح کاملاً تصادفی توسط نرم‌افزار 4/9SAS   مورد تجزیه‌وتحلیل آماری قرار گرفتند.
یافته‌ها: نتایج حاصل از تولید و ارزیابی منابع پروتئینی ایزوله و هیدرولیز شده نشان داد که در طی هیدرولیز، تغییرات جزیی در ترکیب شیمیایی ایجاد شد اما میزان تولید پپتیدهای با وزن مولکولی پایین، افزایش (0/01>p). هم‌چنین، مشخص شد که تولید پپتیدهای زیست فعال از منابع مختلف با روش‌های مختلف دارای کارایی متفاوتی است. به‌طوری‌که در بین محصولات ضایعات گوشت مرغ و پودر آب‌پنیر، بیشترین میزان پپتیدهای با وزن مولکولی پایین، توسط باکتری باسیلوس سابتلیس (به­ ترتیب 1/227 و 0/786 میکروگرم بر میلی‌لیتر)  تولید شد. اتوکلاو نیز منجر به شکستن پیوندهای شیمیایی ضعیف و افزایش تولید پپتیدهای کوچک گردید. هم‌چنین، نتایج حاصل از تولید گاز در شرایط آزمایشگاهی نشان داد که هیدرولیز ضایعات گوشت مرغ و پودر آب‌پنیر با استفاده از قارچ اورایزا منجر به افزایش میزان گاز تولیدی (به ­ترتیب 139/77 و 189/21) گردید و تمام تیمارهای هیدرولیزی منجر به بهبود قابلیت هضم ماده خشک شدند.
نتیجه ­گیری: نتایج کلی تحقیق نشان داد که هیدرولیز ضایعات گوشت مرغ و پودر آب‌پنیر از طریق تخمیر زیستی و هیدرولیز توسط اتوکلاو، میزان تولید پپتیدهای زیست فعال را افزایش داد و باکتری باسیلوس سابتلیس بیشترین میزان پپتید را تولید کرد. هم‌چنین، تیمار آسپرژیلوس اورایزا نسبت به سایر تیمارها، بیشترین افزایش را در میزان گاز تولیدی و بخش قابل تخمیر ایجاد نمود که نشان­دهنده تأثیر مثبت تولید پروتئین هیدرولیز شده با این روش در افزایش فعالیت زیستی پروتئین ضایعات گوشت مرغ و پودر آب پنیر است.

 
متن کامل [PDF 1459 kb]   (498 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه نشخوارکنندگان
دریافت: 1399/11/19 | ویرایش نهایی: 1400/11/16 | پذیرش: 1400/3/22 | انتشار: 1400/11/13

فهرست منابع
1. AOAC. 2000. Official methods of analysis.17th ed.Gaithersburg, M.D., USA, Association of Official Analytical Chemists International.
2. Bacenetti, J., L. Bava, A. Schievano and M. Zucali. 2018. Whey protein concentrate (WPC) production: Environmental impact assessment. Journal of Food Engineering, 224: 139-147. [DOI:10.1016/j.jfoodeng.2017.12.018]
3. Ballatore, M.B., M. del Rosario Bettiol, N.L.V. Braber, C.A. Aminahuel, Y.E. Rossi, G. Petroselli and M.A. Montenegro. 2020. Antioxidant and cytoprotective effect of peptides produced by hydrolysis of whey protein concentrate with trypsin. Food Chemistry, 319: 126472. [DOI:10.1016/j.foodchem.2020.126472]
4. Blayo, C., O. Vidcoq, F. Lazennec and E. Dumay. 2016. Effects of high pressure processing (hydrostatic high pressure and ultra-high pressure homogenisation) on whey protein native state and susceptibility to tryptic hydrolysis at atmospheric pressure. Food Research International, 79: 40-53. [DOI:10.1016/j.foodres.2015.11.024]
5. Boukil, A., S. Suwal, J. Chamberland, Y. Pouliot and A. Doyen. 2018. Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β-lactoglobulin. Journal of Membrane Science, 556: 42-53. [DOI:10.1016/j.memsci.2018.03.079]
6. Boye, J., F. Zare and A. Pletch. 2010. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. J. Food Research International 43: 414-431. [DOI:10.1016/j.foodres.2009.09.003]
7. Cercel, F., M. Stroiu, P. Alexe and D. Ianiţchi. 2015. Characterization of myofibrillar chicken breast proteins for obtain protein films and biodegradable coatings generation. Agriculture and Agricultural Science Procedia, 6: 197-205. [DOI:10.1016/j.aaspro.2015.08.059]
8. Chancharoonpong, C., P.C. Hsieh and S.C. Sheu. 2012. Effect of different combinations of soybean and wheat bran on enzyme production from Aspergillus oryzae S. APCBEE Procedia, 2: 68-72. [DOI:10.1016/j.apcbee.2012.06.013]
9. Dos Santos Aguilar, J.G. and H.H. Sato. 2018. Microbial proteases: Production and application in obtaining protein hydrolysates. Food Research International, 103: 253-262. [DOI:10.1016/j.foodres.2017.10.044]
10. Folch, J., M. Lees and G. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226(1): 497- 509. [DOI:10.1016/S0021-9258(18)64849-5]
11. Hajieghrari, B. and N. Farrokhi. 2020. Investigation on the conserved microRNA genes in higher pPlants. Plant Molecular Biology Reporter, 1-14. [DOI:10.1007/s11105-020-01228-9]
12. Hou, Y., Z. Wu, Z. Dai, G. Wang and G. Wu. 2017. Protein hydrolysates in animal nutrition: Industrial production, bioactive peptides, and functional significance. Journal of Animal Science and Biotechnology, 8(1): 1-13.‌ [DOI:10.1186/s40104-017-0153-9]
13. Kim, M.Y., G.Y. Jang, N.S. Oh, S.Y. Baek, S.H. Lee, K.M. Kim and H.S. Jeong. 2017. Characteristics and in vitro anti-inflammatory activities of protein extracts from pre-germinated black soybean [Glycine max (L.)] treated with high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 43: 84-91. [DOI:10.1016/j.ifset.2017.07.027]
14. Kupski, L., M.A. de Carvalho Silvello, M.R.V. Fontes, T.S. Lima, H. Treichel and E. Badiale Furlong. 2015. R. oryzae Cellulases: A new approach to degrading lignocellulosic material. Journal of Food Biochemistry, 39(2): 129-138. [DOI:10.1111/jfbc.12097]
15. Lasekan, A., F. Abu Bakar and D. Hashim. 2013. Potential of chicken by-products as sources of useful biological resources. Waste Management, 33(3): 552-565. [DOI:10.1016/j.wasman.2012.08.001]
16. Lee, S.Y. and S.J. Hur. 2017. Antihypertensive peptides from animal products, marine organisms, and plants. Food Chemistry, 228: 506-517. [DOI:10.1016/j.foodchem.2017.02.039]
17. Lozano-Ojalvo, D., L. Pérez-Rodríguez, A. Pablos-Tanarro, R. López-Fandiño and E. Molina. 2017. Pepsin treatment of whey proteins under high pressure produces hypoallergenic hydrolysates. Innovative Food Science & Emerging Technologies, 43: 154-162. [DOI:10.1016/j.ifset.2017.07.032]
18. Martinez Alvarez, O., S. Chamorro and A. Brenes. 2015. Protein hydrolysates from animal processing by-products as a source of bioactive molecules with interest in animal feeding: A review. Food Research International, 73(1): 204-212. [DOI:10.1016/j.foodres.2015.04.005]
19. Martins, V.B. and F.M. Netto. 2006. Physicochemical and functional properties of soy protein isolate as a function of water activity and storage. Journal of Food Research International, 39: 145-153. [DOI:10.1016/j.foodres.2005.07.001]
20. Meale, S.J., A.V. Chaves, M.L. He and T.A. McAllister. 2014. Dose-response of supplementing marine algae (Schizochytrium spp.) On production performance, fatty acid profiles and wool parameters of growing lambs. J. Anim. Sci, 92(5): 2202-2213. [DOI:10.2527/jas.2013-7024]
21. Menke, K.H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal research and development, 28: 7-55.
22. Menke, K.H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1): 217-222. [DOI:10.1017/S0021859600086305]
23. Nasehi, M., N.M. Torbatinejad, S. Zerehdaran and A.R. Safaie. 2017. Effect of solid-state fermentation by oyster mushroom (Pleurotus Florida) on nutritive value of some agro by-products. Journal of Applied Animal Research, 45(1): 221-226. [DOI:10.1080/09712119.2016.1150850]
24. Parrado, J., B. Rodriguez-Morgado, M. Tejada, T. Hernandez and C. Garcia. 2014. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enzyme and Microbial Technology, 57: 1-7. [DOI:10.1016/j.enzmictec.2014.01.001]
25. Pelegrine, D.H.G. and C.A. Gasparetto. 2005. Whey proteins solubility as function of temperature and pH. LWT-Food Science and Technology, 38(1): 77-80. [DOI:10.1016/j.lwt.2004.03.013]
26. Pirota, R., M. Tonelotto, P. Delabona, R. Fonseca, D. Paixão, F. Baleeiro, V. Bertucci-Neto and C. Farinas. 2016. Bioprocess developments for cellulase production by aspergillus oryzae cultivated under solid-state fermentation. Brazilian Journal of Chemical Engineering, 33: 21-31. [DOI:10.1590/0104-6632.20160331s00003520]
27. Rashad, M.M., A.E. Mahmoud, H.M. Abdou and M.U. Nooman. 2011. Improvement of nutritional Quality andantioxidant activities of yeast fermented soybean curd residue, Afr Journal Biotechnol, 10: 5504-5513.
28. Sangronis, E., M. Rodríguez, R. Cava and A. Torres. 2006. Protein quality of germinated Phaseolus vulgaris. European Food Research and Technology, 222(1-2): 144. [DOI:10.1007/s00217-005-0137-4]
29. Sanjukta, S., A.K. Rai, A. Muhammed, K. Jeyaram and N.C. Talukdar. 2015. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. Journal of Functional Foods, 14: 650-658. [DOI:10.1016/j.jff.2015.02.033]
30. Theodorou, M.K., B.A. Williams, M.S. Dhanoa, A.B. McAllan and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal feed science and technology, 48(3-4): 185-197.‌ [DOI:10.1016/0377-8401(94)90171-6]
31. Tian, H., G. Guo, X. Fu, Y. Yao, L. Yuan and A. Xiang. 2018. Fabrication, properties and applications of soy-protein-based materials: A review. International journal of biological macromolecules, 120: 475-490. [DOI:10.1016/j.ijbiomac.2018.08.110]
32. Yin, H., F. Jia and J. Huang. 2019. The variation of two extracellular enzymes and soybean meal bitterness during solid-state fermentation of Bacillus subtilis. Grain & Oil Science and Technology, 2(2): 39-43. [DOI:10.1016/j.gaost.2019.05.001]
33. Zhang, Y., B. Dai, Y. Deng and Y. Zhao. 2016. In vitro anti-inflammatory and antioxidant activities and protein quality of high hydrostatic pressure treated squids (Todarodes pacificus). Food chemistry, 203: 258-266. [DOI:10.1016/j.foodchem.2016.02.072]
34. Zhao, Y., D. Sun-Waterhouse, M. Zhao, Q. Zhao, C. Qiu and G. Su. 2018. Effects of solid-state fermentation and proteolytic hydrolysis on defatted soybean meal. LWT, 97: 496-502. [DOI:10.1016/j.lwt.2018.06.008]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb