دوره 11، شماره 30 - ( زمستان 1399 )                   جلد 11 شماره 30 صفحات 73-66 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

AHMADI F, ZENDEHDEL M, BABAPOUR V, PANAHI N. (2020). Evaluating the Role of Corticotropin Receptors on Feed Intake Using Melanocortin Receptor Agonists in Neonatal Broilers. Res Anim Prod. 11(30), 66-73. doi:10.52547/rap.11.30.66
URL: http://rap.sanru.ac.ir/article-1-1068-fa.html
احمدی فریبا، زنده دل مرتضی، باباپور وهاب، پناهی نگار. بررسی نقش گیرنده‌های کورتیکوتروپینی بر مصرف غذا با استفاده از آگونیست گیرنده‌های M‌3 و M4 ملانوکورتینی در جوجه های گوشتی پژوهشهاي توليدات دامي 1399; 11 (30) :73-66 10.52547/rap.11.30.66

URL: http://rap.sanru.ac.ir/article-1-1068-fa.html


1- دانشکده دامپزشکی، دانشگاه آزاد اسلامی، واحد علوم تحقیقات، تهران، ایران
2- دانشیار دانشکده دامپزشکی دانشگاه تهران، تهران. ایران
3- دانشکده دامپزشکی دانشگاه تهران، تهران. ایران
چکیده:   (2128 مشاهده)

   شواهد به­ دست آمده از پژوهش‌های حیوانی حاکی از نقش سیستم ­های کورتیکوتروپینی و ملانوکورتینی در مصرف خوراک دارد، اما ارتباط آنها تاکنون در پرندگان بررسی نشده است. در این پژوهش سه آزمایش با هدف بررسی گیرنده­‌های کورتیکوتروپینی بر مصرف غذا با استفاده از آگونیست گیرنده ­های M3 و M4  ملانوکورتینی در جوجه­ های تازه از تخم درآمده انجام شد (هر آزمایش شامل چهار گروه و 11 جوجه در هر گروه بود). در آزمایش اول، جوجه‌های محروم از غذا به مدت سه ساعت، تزریقات داخل بطن مغزی (ICV) را به ­شکل زیر دریافت کردند: سالین، MTII (آگونیست گیرنده‌های MC3/MC4 (2/45، 4/9 و 9/8 پیکومول). در آزمایش دوم، سالین، MTII (9/8 پیکومول)، astressin-B (آنتاگونیست گیرنده ­های CRF1/ CRF2، 30 میکروگرم) و astressin-B + MTII تزریق شدند. در آزمایش سوم، جوجه­ ها با سالین،  MTII (9/8 پیکومول)، astressin-2B (آنتاگونیست گیرنده ­های CRF2، 30 میکروگرم) و astressin-B + MTII تزریق شدند. سپس مصرف تجمعی غذا تا 120 دقیقه بعد از تزریق اندازه ­گیری شد. با توجه به نتایج به  ­دست آمده، کاهش وابسته به دوز بر مصرف غذا بعد از MTII دیده شد (0/05p<). تزریق داخل بطنی مغزی MTII (9/8 پیکومول) + astressin-2B موجب مهار هیپوفاژی ناشی از MTII شد (0/05p<).  نتایج نشان­ دهنده این بود که هیپوفاژی ناشی از سیستم ملانوکورتینی از طریق گیرنده‌های CRF2 کورتیکوتروپینی در جوجه­ های گوشتی میانجی‌گری می‌شود.

متن کامل [PDF 562 kb]   (598 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی
دریافت: 1398/9/18 | پذیرش: 1399/6/29

فهرست منابع
1. Atsuchi, K., A. Asakawa, M. Ushikai, K. Ataka, M. Tsai and K. Koyama. 2010. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport, 21(15): 1008-1011. [DOI:10.1097/WNR.0b013e32833f7b96]
2. Bungo, T., K. Yahata, T. Izumi, K.I. Dodo, K. Yanagita and J.I. Shiraishi. 2008. Centrally administered tryptophan suppresses food intake in free fed chicks through the serotonergic system. The Journal of Poultry Science, 45(3): 215-219. [DOI:10.2141/jpsa.45.215]
3. Davis, J.L., D.T. Masuoka, L.K. Gerbrandt and A. Cherkin. 1979. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiology & Behavior, 22(4): 693-695. [DOI:10.1016/0031-9384(79)90233-6]
4. Dong, J., H. Xu, P.F. Wang, G.J. Cai, H.F. Song and C.C. Wang. 2013. Nesfatin-1 stimulates fatty-acid oxidation by activating AMP-activated protein kinase in STZ-induced type 2 diabetic mice. PLoS One, 8(12): e83397. [DOI:10.1371/journal.pone.0083397]
5. Furuse, M., M. Matsumoto, N. Saito, K .Sugahara and S. Hasegawa. 1997. The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. European Journal of Pharmacology, 339(2-3): 211-213. [DOI:10.1016/S0014-2999(97)01391-5]
6. Guo, F.F., L. Xu, Sl. Gao, X. Sun, Z. Li and Y. Gong. 2015. The effects of nesfatin‐1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats. Journal of Neurochemistry, 132(3): 266-275. [DOI:10.1111/jnc.12973]
7. Heidarzadeh, H., M. Zendehdel, V. Babapour and H. Gilanpour. 2018. The effect of nesfatin-1 on food intake in neonatal chicks: role of CRF 1/CRF2 and H1/H3 receptors. Veterinary Research Communications, 42(1): 39-47. [DOI:10.1007/s11259-017-9706-9]
8. Iwasaki, Y., H. Nakabayashi, M. Kakei, H. Shimizu, M. Mori and T. Yada. 2009. Nesfatin-1 evokes Ca 2+ signaling in isolated vagal afferent neurons via Ca 2+ influx through N-type channels. Biochemical and Biophysical Research Communications, 390(3): 958-962. [DOI:10.1016/j.bbrc.2009.10.085]
9. Khazari ,B., M .Rezaei and M. kazemifard. 2019. The effect of different sources of insoluble fiber on performance, nutrient digestibility and blood parameters in broiler chicks. Rap, 10(24):1-9 [DOI:10.29252/rap.10.24.1]
10. Kohno, D., M. Nakata, Y. Maejima, H. Shimizu, U. Sedbazar and N. Yoshida. 2007. Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology, 149(3): 1295-1301. [DOI:10.1210/en.2007-1276]
11. Kumar, K.G., G.M .Sutton, J.Z. Dong, P. Roubert, P. Plas and H.A. Halem. 2009. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R-and MC4R-deficient C57BL/6J mice. Peptides, 30(10): 1892-1900. [DOI:10.1016/j.peptides.2009.07.012]
12. Lam, D.D., M.J. Przydzial, S.H. Ridley, G.S. Yeo, J.J. Rochford and S.O'Rahilly. 2007. Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology, 149(3): 1323-1328. [DOI:10.1210/en.2007-1321]
13. Lu, X.Y., G.S. Barsh, H. Akil and S.J. Watson. 2003. Interaction between α-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. Journal of Neuroscience, 23(21): 7863-7872. [DOI:10.1523/JNEUROSCI.23-21-07863.2003]
14. Mortazavi, S., R. Gonzalez, R. Ceddia and S. Unniappan. 2015. Long-term infusion of nesfatin-1 causes a sustained regulation of whole-body energy homeostasis of male Fischer 344 rats. Frontiers in Cell and Developmental Biology, 3: 22. [DOI:10.3389/fcell.2015.00022]
15. Novoseletsky, N., A. Nussinovitch and M. Friedman-Einat. 2011. Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor 1 administered by either injection or ingestion in hydrocolloid carriers. General and Comparative Endocrinology, 70 (3): 522-527. [DOI:10.1016/j.ygcen.2010.11.011]
16. Olanrewaju, H., J. Thaxton, W. Dozier, J. Purswell, W. Roush and S. Branton. 2006. A review of lighting programs for broiler production. International Journal of Poultry Science, 5(4): 301-308. [DOI:10.3923/ijps.2006.301.308]
17. Richard, D., Q. Lin and E. Timofeeva. 2002. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. European Journal of Pharmacology, 440(2-3): 189-197. [DOI:10.1016/S0014-2999(02)01428-0]
18. Saito, E.S., H. Kaiya, T. Tachibana, S. Tomonaga, D.M. Denbow and K. Kangawa. 2005. Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regulatory Peptides, 125(1-3): 201-208. [DOI:10.1016/j.regpep.2004.09.003]
19. Samadian F, M.J. Eskandari and M.R. Bahreini Behzadi. 2019. Preference of broiler chickens for feed color. Rap, 10(25): 1-7. [DOI:10.29252/rap.10.25.1]
20. Shousha, S., D. Kirat and T. Naso. 2015. Effect of central and peripheral nesfatin-1 on food intake in japanese quail. AASCIT Journal of Biology, 1(1): 1-9.
21. Silberman, Y. and D.G. Winder. 2013. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala. Neuropharmacology, 70: 316-23. [DOI:10.1016/j.neuropharm.2013.02.014]
22. Stengel, A., M. Goebel, L. Wang, J. Rivier, P. Kobelt and H. Mönnikes. 2009. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology, 150(11): 4911-4919. [DOI:10.1210/en.2009-0578]
23. Stengel, A. and Y. Tache. 2013. Role of brain NUCB2/nesfatin-1 in the regulation of food intake. Current Pharmaceutical Design, 19(39): 6955-6959. [DOI:10.2174/138161281939131127125735]
24. Tachibana, T., K. Sugahara, A. Ohgushi, R. Ando and S.I .Kawakami, T .Yoshimatsu ., et al. 2001. Intracerebroventricular injection of agouti-related protein attenuates the anorexigenic effect of alpha-melanocyte stimulating hormone in neonatal chicks. Neuroscience Letters, 305(2): 131-134. [DOI:10.1016/S0304-3940(01)01827-4]
25. Yamada, H. and A.W. Bruijnzeel. 2011. Stimulation of α2-adrenergic receptors in the central nucleus of the amygdala attenuates stress-induced reinstatement of nicotine seeking in rats. Neuropharmacology, 60(2-3): 303-11. [DOI:10.1016/j.neuropharm.2010.09.013]
26. Atsuchi, K., A. Asakawa, M. Ushikai, K. Ataka, M. Tsai and K. Koyama. 2010. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport, 21(15): 1008-1011. [DOI:10.1097/WNR.0b013e32833f7b96]
27. Bungo, T., K. Yahata, T. Izumi, K.I. Dodo, K. Yanagita and J.I. Shiraishi. 2008. Centrally administered tryptophan suppresses food intake in free fed chicks through the serotonergic system. The Journal of Poultry Science, 45(3): 215-219. [DOI:10.2141/jpsa.45.215]
28. Davis, J.L., D.T. Masuoka, L.K. Gerbrandt and A. Cherkin. 1979. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiology & Behavior, 22(4): 693-695. [DOI:10.1016/0031-9384(79)90233-6]
29. Dong, J., H. Xu, P.F. Wang, G.J. Cai, H.F. Song and C.C. Wang. 2013. Nesfatin-1 stimulates fatty-acid oxidation by activating AMP-activated protein kinase in STZ-induced type 2 diabetic mice. PLoS One, 8(12): e83397. [DOI:10.1371/journal.pone.0083397]
30. Furuse, M., M. Matsumoto, N. Saito, K .Sugahara and S. Hasegawa. 1997. The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. European Journal of Pharmacology, 339(2-3): 211-213. [DOI:10.1016/S0014-2999(97)01391-5]
31. Guo, F.F., L. Xu, Sl. Gao, X. Sun, Z. Li and Y. Gong. 2015. The effects of nesfatin‐1 in the paraventricular nucleus on gastric motility and its potential regulation by the lateral hypothalamic area in rats. Journal of Neurochemistry, 132(3): 266-275. [DOI:10.1111/jnc.12973]
32. Heidarzadeh, H., M. Zendehdel, V. Babapour and H. Gilanpour. 2018. The effect of nesfatin-1 on food intake in neonatal chicks: role of CRF 1/CRF2 and H1/H3 receptors. Veterinary Research Communications, 42(1): 39-47. [DOI:10.1007/s11259-017-9706-9]
33. Iwasaki, Y., H. Nakabayashi, M. Kakei, H. Shimizu, M. Mori and T. Yada. 2009. Nesfatin-1 evokes Ca 2+ signaling in isolated vagal afferent neurons via Ca 2+ influx through N-type channels. Biochemical and Biophysical Research Communications, 390(3): 958-962. [DOI:10.1016/j.bbrc.2009.10.085]
34. Khazari ,B., M .Rezaei and M. kazemifard. 2019. The effect of different sources of insoluble fiber on performance, nutrient digestibility and blood parameters in broiler chicks. Rap, 10(24):1-9 [DOI:10.29252/rap.10.24.1]
35. Kohno, D., M. Nakata, Y. Maejima, H. Shimizu, U. Sedbazar and N. Yoshida. 2007. Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology, 149(3): 1295-1301. [DOI:10.1210/en.2007-1276]
36. Kumar, K.G., G.M .Sutton, J.Z. Dong, P. Roubert, P. Plas and H.A. Halem. 2009. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R-and MC4R-deficient C57BL/6J mice. Peptides, 30(10): 1892-1900. [DOI:10.1016/j.peptides.2009.07.012]
37. Lam, D.D., M.J. Przydzial, S.H. Ridley, G.S. Yeo, J.J. Rochford and S.O'Rahilly. 2007. Serotonin 5-HT2C receptor agonist promotes hypophagia via downstream activation of melanocortin 4 receptors. Endocrinology, 149(3): 1323-1328. [DOI:10.1210/en.2007-1321]
38. Lu, X.Y., G.S. Barsh, H. Akil and S.J. Watson. 2003. Interaction between α-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. Journal of Neuroscience, 23(21): 7863-7872. [DOI:10.1523/JNEUROSCI.23-21-07863.2003]
39. Mortazavi, S., R. Gonzalez, R. Ceddia and S. Unniappan. 2015. Long-term infusion of nesfatin-1 causes a sustained regulation of whole-body energy homeostasis of male Fischer 344 rats. Frontiers in Cell and Developmental Biology, 3: 22. [DOI:10.3389/fcell.2015.00022]
40. Novoseletsky, N., A. Nussinovitch and M. Friedman-Einat. 2011. Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor 1 administered by either injection or ingestion in hydrocolloid carriers. General and Comparative Endocrinology, 70 (3): 522-527. [DOI:10.1016/j.ygcen.2010.11.011]
41. Olanrewaju, H., J. Thaxton, W. Dozier, J. Purswell, W. Roush and S. Branton. 2006. A review of lighting programs for broiler production. International Journal of Poultry Science, 5(4): 301-308. [DOI:10.3923/ijps.2006.301.308]
42. Richard, D., Q. Lin and E. Timofeeva. 2002. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. European Journal of Pharmacology, 440(2-3): 189-197. [DOI:10.1016/S0014-2999(02)01428-0]
43. Saito, E.S., H. Kaiya, T. Tachibana, S. Tomonaga, D.M. Denbow and K. Kangawa. 2005. Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regulatory Peptides, 125(1-3): 201-208. [DOI:10.1016/j.regpep.2004.09.003]
44. Samadian F, M.J. Eskandari and M.R. Bahreini Behzadi. 2019. Preference of broiler chickens for feed color. Rap, 10(25): 1-7. [DOI:10.29252/rap.10.25.1]
45. Shousha, S., D. Kirat and T. Naso. 2015. Effect of central and peripheral nesfatin-1 on food intake in japanese quail. AASCIT Journal of Biology, 1(1): 1-9.
46. Silberman, Y. and D.G. Winder. 2013. Corticotropin releasing factor and catecholamines enhance glutamatergic neurotransmission in the lateral subdivision of the central amygdala. Neuropharmacology, 70: 316-23. [DOI:10.1016/j.neuropharm.2013.02.014]
47. Stengel, A., M. Goebel, L. Wang, J. Rivier, P. Kobelt and H. Mönnikes. 2009. Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology, 150(11): 4911-4919. [DOI:10.1210/en.2009-0578]
48. Stengel, A. and Y. Tache. 2013. Role of brain NUCB2/nesfatin-1 in the regulation of food intake. Current Pharmaceutical Design, 19(39): 6955-6959. [DOI:10.2174/138161281939131127125735]
49. Tachibana, T., K. Sugahara, A. Ohgushi, R. Ando and S.I .Kawakami, T .Yoshimatsu ., et al. 2001. Intracerebroventricular injection of agouti-related protein attenuates the anorexigenic effect of alpha-melanocyte stimulating hormone in neonatal chicks. Neuroscience Letters, 305(2): 131-134. [DOI:10.1016/S0304-3940(01)01827-4]
50. Yamada, H. and A.W. Bruijnzeel. 2011. Stimulation of α2-adrenergic receptors in the central nucleus of the amygdala attenuates stress-induced reinstatement of nicotine seeking in rats. Neuropharmacology, 60(2-3): 303-11. [DOI:10.1016/j.neuropharm.2010.09.013]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb