دوره 11، شماره 27 - ( بهار 1399 )                   جلد 11 شماره 27 صفحات 116-125 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khanegir R, Rokouei M, Faraji-Arough H, Maghsoudi A, Dashab G R. Mapping of Quantitative Trait Loci for Immunity Traits by Microsatellite Markers on chromosome 5 in Japanese Quail. rap. 2020; 11 (27) :116-125
URL: http://rap.sanru.ac.ir/article-1-1063-fa.html
خانه گیر راحله، رکوعی محمد، فرجی آروق هادی، مقصودی علی، داشاب غلامرضا. مکان یابی جایگاه های کنترل کننده صفات ایمنی با استفاده از نشانگرهای ریزماهواره ای بر روی کروموزوم ۵ در بلدرچین ژاپنی. پژوهشهاي توليدات دامي. 1399; 11 (27) :116-125

URL: http://rap.sanru.ac.ir/article-1-1063-fa.html


دانشگاه زابل
چکیده:   (479 مشاهده)
صفات ایمنی به دلیل ارتباط مستقیمی که با صفات رشد و ارزش اقتصادی پرورش بلدرچین دارند از اهمیت بالایی برخوردار می ­باشند، هدف از این تحقیق، پویش کروموزم ۵ بلدرچین ژاپنی به منظور تشخیص QTL مؤثر بر صفات ایمنی ، با استفاده از یک طرح تلاقی چهار نسلی بود. برای این منظور چهار سویه A and M Texas، Wild،Italian Speckled  و Tuxedo بلدرچین ژاپنی دو به دو و رفت و برگشتی تلاقی داده شدند و نسل اول ایجاد شد. سپس از تلاقی پرندگان هیبرید نسل اول، نسل ­های بعدی شامل دوم، سوم و چهارم ایجاد شدند. داده ­های فنوتیپی شامل صفات مرتبط با ایمنی اکتسابی پرندگان در چالش با SRBC ۵ درصد از جمله مقدار ایمونوگلوبولین­ های T، M و Y  اندازه ­گیری شدند. والدین نسل سوم و چهارم و کل پرندگان حاصل از والدین انتخابی نسل چهارم برای سه نشانگرهای ریز­ماهواره­ ای واقع بر روی کروموزوم ۵ تعیین ژنوتیپ شدند. تجزیه و تحلیلQTL  به روش مکان ­یابی درون فاصله ­ای مبتنی بر رگرسیون و با مدل ژنتیکی افزایشی نرم افزار  GridQTL انجام شد. سه QTL مجاور هم در میانه کروموزوم ۵ برای سه ویژگی IgT، IgM و IgY به ترتیب در موقعیت­ های ۵/۱۳، ۹/۸ و ۷/۱۴ سانتی­مورگان در نزدیکی نشانگر GUJ0049 شناسایی شدند. بنابراین، نتایج نشان می ­دهد که در مجاورت نشانگر GUJ0049 حداقل یک جایگاه ژنی با اثر عمده بر صفات ایمنی وجود دارد و اضافه کردن اطلاعات ژنوتیپ­ های نشانگر مذکور در مدل ­های آماری می تواند موجب بهبود صحت پیش ­بینی ارزش­ های اصلاحی صفات ایمنی در بلدرچین شود.
متن کامل [PDF 214 kb]   (145 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک و اصلاح نژاد طیور
دریافت: 1398/8/20 | ویرایش نهایی: 1399/2/23 | پذیرش: 1398/11/19 | انتشار: 1399/2/23

فهرست منابع
1. Abbas, A.K., A.H. Lichtman and S. Pillai. 2014. Basic immunology: functions and disorders of the immune system (Elsevier Health Sciences).
2. Baron, E.E., A.S. Moura, M.C. Ledur, L.F. Pinto, C. Boschiero, D.C. Ruy, K. Nones, E.L. Zanella, M. F. Rosário, D.W. Burt and L.L. Coutinho. 2010. QTL for percentage of carcass and carcass parts in a broiler x layer cross. Animal Genetics, 42(2): 117-124. [DOI:10.1111/j.1365-2052.2010.02105.x]
3. Botestein, D., R.L. White, M. Skolnick and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment lrngth polymorphisms. American. Journal of Human Genetic, 32: 314-331.
4. Bovenhuis, H., H. Bralten, M.G. Nieuwland and H.K. Parmentier. 2002. Genetic parameters for antibody response of chickens to sheep red blood cells based on a selection experiment. Poultry Science, 81(3): 309-315. [DOI:10.1093/ps/81.3.309]
5. Buchanan, F.C. and T.D. Thue. 1998. Intra-breed polymorphic information content of microsatellites in cattle and sheep. Canadian Journal of Animal Science, 78: 425-428. [DOI:10.4141/A98-002]
6. Charati, H., A. Esmailizadeh, R. Jabari and A. Ayatollahi Mehrgardi. 2014. Mapping quantitative trait loci affecting leukocytes, body temperature and tonic immobility in Japanese quail. Novin Genetic, 9(1): 57-66 (In Persian).
7. Churchill, G.A. and R.W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics, 138: 963-971.
8. Davison, F., B. Kaspers, K.A. Schat and P. Kaiser. 2011. Avian immunology (Academic Press).
9. Ebrahimi, K., G.R. Dashab, H. Faraji- Arough, A. Maghsoudi and M. Rokouei. 2019. Genome scan of Japanese quail chromosome 5 for detecting of QTLs of growth traits. Animal Production Research, (In press) (Persian) doi: 10.22124/AR.2019.10859.1333
10. Esmailizadeh, A.K., A. Baghizadeh and M. Ahmadizadeh. 2012. Genetic mapping of quantitative trait loci affecting body-weight on chromosome 1 in a commercial strain of Japanese quail. Animal Production Science, 52: 64-68. [DOI:10.1071/AN11220]
11. Frost, A.J. and J.B. Woolcock. 1991. Antibiotics and animal production. In: Microbiology of Animals and Animal Products, New York, NY: Elsevier, pp: 181-194.
12. Garcia, V., P.C. Gregori, F. Hernandez, M.D. Megıas and J. Madrid. 2007. Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research, 16: 555-562. [DOI:10.3382/japr.2006-00116]
13. Gavora, J.S. 1993. Genetic control of disease and disease resistance in poultry. Pages 231-241 in: Manipulation of Avian Genome. R.J. Etches and A.M. Verrinder-Gibbins, ed. CRC Press, Boca Raton, FL. [DOI:10.1201/9780203748282-15]
14. Iranmanesh, M., A. Esmailizadeh, M. R. Mohammad abadi and S. Sohrabi. 2017. Identification of quantitative trait loci affecting average daily gain and Kleiber ratio on chromosome 5 in an F2 population of Japanese quail. Animal Production Research, 5(4): 12-22 (In Persian).
15. Jabbari, R., A.K. Esmailizadeh, H. Charati, M.R. Mohammadabadi and S.S. Sohrabi. 2014. Identification of QTL for live weight and growth rate using DNA markers on chromosome 3 in an F2 population of Japanese quail. Molecular Biology Reports, 41: 1049-1057. [DOI:10.1007/s11033-013-2950-3]
16. Janeway, C.A. 2001. How the immune system works to protect the host from infection: a personal view. Proceedings of the National Academy of Sciences, 98: 7461-7468. [DOI:10.1073/pnas.131202998]
17. Janeway, C., P. Travers, M. Walport and M. Shlomchik. 2004. Immunobiology. Garland Science. New York.
18. Kayang, B., A. Vivnal, M. Inoue‐Murayama, M. Miwa, J.L. Monvoisin, S. Ito and F. Minvielle. 2004. A first‐generation microsatellite linkage map of the Japanese quail. Animal genetics, 35: 195-200. [DOI:10.1111/j.1365-2052.2004.01135.x]
19. Liu, K. and S.V. Muse. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21: 2128-2129. [DOI:10.1093/bioinformatics/bti282]
20. Lwelamira, J. and A. Katule. 2004. Genetic determination of immune responses to Newcastle disease virus vaccine in chickens. Bulletin of Animal Health and Production in Africa, 52: 186-197. [DOI:10.4314/bahpa.v52i3.32669]
21. Lwelamira, J., G.C. Kifaro and P.S. Gwakisa. 2009. Genetic parameters for body weights, egg traits and antibody response against Newcastle Disease Virus (NDV) vaccine among two Tanzania chicken ecotypes. Tropical Animal Health and Production, 41(1): 51-59.‌ [DOI:10.1007/s11250-008-9153-2]
22. Martin, A., E.A. Dunnington, W.B. Gross, W.E. Briles, R.W. Briles and P.B. Siegel. 1990. Production traits and alloantigen systems in lines of chickens selected for high or low antibody responses to sheep erythrocytes. Poultry Science, 69: 871-878. [DOI:10.3382/ps.0690871]
23. Metchnikoff, E. 1905. Immunity in infective diseases (University Press).
24. Miller, S. A., D.D. Dykes and H.F. Polesky. 1998. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16: 12-15.
25. Minvielle, F., B. Kayang, M. Inoue-Murayama, M. Miwa, A. Vignal, D. Gourichon, A. Neau, J. Monvoisin and S. Ito. 2005. Microsatellite mapping of QTL affecting growth, feed consumption, egg production, tonic immobility and body temperature of Japanese quail. BMC Genomics, 6: 87. [DOI:10.1186/1471-2164-6-87]
26. Moradian, H., A. Esmailizadeh and M. Mohammadabadi. 2015. Microsatellite mapping of quantitative trait loci associated with carcass traits on chromosome 1 in Japanese quail. Animal Production, 15(2): 89-99 (In Persian).
27. Navani, N.K., P. Jain, S. Gupta, B.S. Sisodia and S. Kumar. 2002. A set of cattle microsatellite DNA markers for genome analysis of riverine buffalo (Bubalus bubalis). Animal Genetics, 33(2): 149-154. [DOI:10.1046/j.1365-2052.2002.00823.x]
28. Nobakht, A., J. Norany and A.R. Safamher. 2011. The effects of different amount of Mentha pulegium L. (pennyroyal) on performance, carcass traits, hematological and blood biochemical parameters of broilers. Journal of Medicinal Plants Research, 5: 3763-3768.
29. Peterson, A.T., J. Soberón and V. Sánchez-Cordero. 1999. Conservatism of ecological niches in evolutionary time. Science, 285: 1265-1267. [DOI:10.1126/science.285.5431.1265]
30. Pinard, M.H., J.A. M. van Arendonk, M.G.B. Nieuwland and A.J. Van Der Zijpp. 1992. Divergent selection for immune responsiveness in chickens: Estimation of realized heritability with an animal model. Journal of Animal Science, 70: 2986-2993. [DOI:10.2527/1992.70102986x]
31. Ponte, P. and C. Rosado. 2008. Pasture intake improve the performance and meat sensory attributes of free-range in broilers. Poultry Science, 87: 71-79. [DOI:10.3382/ps.2007-00147]
32. Seaton, G., J. Hernandez, J.A. Grunchec, I. White, J. Allen, D.J. De Koning, W. Wei, D. Berry, C. Haley and S. Knott. 2006. GridQTL: A Grid Portal for QTL Mapping of Compute Intensive Datasets. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil.
33. Singh, P., S. Kumar, H.N. Singh and D.P. Singh. 2010. Genetics of immunocompetence traits in Aseel native chicken. Journal of Applied Animal Research, 37(2): 229-231.‌ [DOI:10.1080/09712119.2010.9707130]
34. Sivaraman, G.K., S. Kumar, V.K. Saxena, N.S. Singh and B.M. Shivakumar. 2005. Genetics of immunocompetent traits in a synthetic broiler dam line. British Poultry Science, 46(2): 169-174.‌ [DOI:10.1080/00071660500064949]
35. Sohrabi, S.S., A.K. Esmailizadeh, A. Baghizadeh, H. Moradian, M.R. Mohammadabadi, N. Askari and E. Nasirifar. 2012. Quantitative trait loci underlying hatching weight and growth traits in an F2 intercross between two strains of Japanese quail. Animal Production Science, 52(1): 1012-1018. [DOI:10.1071/AN12100]
36. Uemoto, Y., S. Sato, S. Odawara, H. Nokata, Y. Oyamada, Y. Taguchi, S. Yanai, O. Sasaki, H. Takahashi, K. Nirasawa and E. Kobayashi. 2009. Genetic mapping of quantitative trait loci affecting growth and carcass traits in F2 intercross chickens. Poultry Science, 88(3): 477-482. [DOI:10.3382/ps.2008-00296]
37. Wijga, S., H.K. Parmentier, M.G.B. Nieuwland and H. Bovenhuis. 2009. Genetic parameters for levels of natural antibodies in chicken lines divergently selected for specific antibody response. Poultry Science, 88(9): 1805-1810. [DOI:10.3382/ps.2009-00064]
38. Yalcin, S., I. Oguz and S. Otles. 1995. Carcass characteristics of quail (Coturnix Coturnix Japonica) slaughtered at different ages. British Poultry Science, 36: 393-399. [DOI:10.1080/00071669508417786]
39. Yeh, F.C., R. Yang and T. Boyle. 1999. POPEGENE. Version 1.31. Microsoft Window-based Freeware for Population Genetic Analysis, University of Alberta. Edmonton.
40. Zane, L., L. Bargelloni and T. Patarnello. 2002. Strategies for microsatellite isolation: a review. Molecular Ecology, 11(1): 1-16. [DOI:10.1046/j.0962-1083.2001.01418.x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Research On Animal Production(Scientific and Research)

Designed & Developed by : Yektaweb