Volume 10, Issue 24 (9-2019)                   Res Anim Prod 2019, 10(24): 18-26 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Royan M, Hashemi M, Seighalani R. (2019). Effect of Isolates of Lactobacillus Reuteri and Lactobacillus Salivarius Isolated from the Gastrointestinal Tract of Native Poultry of Northern of Iran on Performance, Serum Lipids and Immune Parameters of Broiler Chickens . Res Anim Prod. 10(24), 18-26. doi:10.29252/rap.10.24.18
URL: http://rap.sanru.ac.ir/article-1-958-en.html
North Region Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Rasht, IRAN
Abstract:   (4550 Views)
The purpose of this study was to investigate the effects of the use of three lactobacillus strains (L. reuteri ABRIG17 (MF686477), L. reuteri ABRIG23 (MF686483), L. reuteri ABRIG3 (MF686463)), Isolated from duodenum and Jejunum sections of the native Guilan chickens and one isolate of L. salivarius NABRII58 (MH595986) isolated from the digestive system of the native ducks of Mazandaran, on serum lipids and immune parameters of broiler chickens. The strains were isolated from 383 gram-positive and catalase negative lactic acid bacteria in a screening procedure for the detection of bacteria with probiotic potential. In the experiment, 500 male Ross 308 male broiler chicks were used in a completely randomized design with 5 treatments, 5 replicates and 20 birds per replicate. The treatments consisted of: 1-The basal diet as control group (treatment C), 2- The basal diet + 1 g / kg of mixed powder containing MF686463 (L. Reuteri ABRIG3 (LR1), 3- The base diet + 1 g /kg of L. Reuteri ABRIG23 (MF686483) (LR2 treatment), 4- The basal diet + 1 g / kg of L. Reuteri (MF686477) ABRIG17 (LR3 treatment) and 5- The basal diet + 1 g / kg of L. Salivarius (MH595986) NABRII58 (Treatment LS). The use of bacterial strains in LR1 and LS treatments resulted in improved weight gain at the end of the experiment (P <0.05). The bacterial strains in LR1 treatment improved daily weight gain in whole experimental period (P <0.05). All three strains of Lactobacillus used, namely, LR1, LR2 and LR3 treatments, caused a significant decrease in abdominal fat pad (P <0.05). In LR3 treatment, the increase in carcass weight was observed (P <0.05). Measuring serum immunoglobulins in broiler chicks after two stages of sheep red blood cell injection showed that LR3 had the highest total immunoglobulin level after the second injection (P <0.05), and IgG levels in the LR1 treatment increased after the first injection compared to the control group (P <0.05). After the second injection, the IgG of all the four experimental groups were higher than control group (P <0.05), but IgM showed no significant difference between experimental treatments and control group. Total serum cholesterol concentration of LR2 treatment was significantly (P <0.05) lower than other treatments. There was no significant difference in serum triglyceride level between control and the LR1, LR2 and LS treatments, and only LR3 triglyceride level was higher than others (P <0.05). The level of HDL or good cholesterol in LS treatment was higher than the control group (P <0.05). Serum LDL level did not show any significant difference between the experimental and control groups. The present study revealed that probiotic bacteria can be isolated from native poultry microbial populations and isolated bacteria can improve the production and immunity of broiler chicks. It is worthy of note that the positive effect of Lactobacillus salivarius strain isolated from the native duck gastrointestinal tract on the weight gain and serum immunoglobulins in broiler chickens suggested that the gastrointestinal bacteria of a species of poultry could be used as a probiotic in other types of poultry.
Full-Text [PDF 744 kb]   (1147 Downloads)    
Type of Study: Applicable | Subject: تغذیه طیور
Received: 2018/10/6 | Revised: 2019/09/22 | Accepted: 2019/05/20 | Published: 2019/09/18

1. Abeer, E.S.M and S.A. Mosaad. 2015. Effect of dietary probiotic and/or prebiotic supplementation on growth performance, carcass traits and some serum biochemical alterations in broiler chicken. Journal of Animal Science Advances, 5: 1480-1492. [DOI:10.5455/jasa.20151118110619]
2. Al-Saad, S., M. Abbod and A. Abo Yones. 2014. Effect of some growth promoters on blood hematology and serum composition of broiler chickens. International Journal of Agricultural Research, 9: 265-270. [DOI:10.3923/ijar.2014.265.270]
3. Ashayerizadeh, A., N. Dabiri, K.H. Mirzadeh and M.R. Ghorbani. 2011. Effect of dietary supplementation of probiotic and prebiotic on growth indices and serum biochemical parameters of broiler chickens. Cell and Animal Biology, 5: 152-156.
4. Ashayerizadeh, O., B. Dastar, F. Samadi, M. Khomeiri, A. Yamchi and S. Zerehdaran. 2014. Comparison between the effects of two multi-strain probiotics and antibiotics on growth performance, carcass characteristics, gastrointestinal microbial population and serum biochemical values of broiler chickens. Journal of Animal Science, 3: 110-119.
5. Asli, M.M., S.A. Hosseini, H. Lotfollahian and F. Shariatmadari. 2007. Effect of probiotics, yeast, vitamin E and C supplements on performance and immune response of laying hen during high environmental temperature. International Journal of Poultry Science, 6: 895-900. [DOI:10.3923/ijps.2007.895.900]
6. Britton, R.A. and J. Versalovic. 2008. Probiotics and gastrointestinal infections: a review article. Interdiscip Perspect Infect Dis 1-10. http://dx.doi.org/10.1155/2008/290769. Hindawi Pub-lishing Corporation. [DOI:10.1155/2008/290769]
7. EFSA: Panel on additives and products or substances used in animal feed, guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. 2012. EFSA Journal, 10: 1-10. [DOI:10.2903/j.efsa.2012.2740]
8. Eto, S.F., F.G. Andrade, J.W. Pinheiro, M.R. Balanin, S.P. Ramos and E.J. Venancio. 2012. Effect of inoculation route on the production of antibodies and histological characteristics of the spleen in laying hens. Brazilian Journal of Poultry Science, 14: 63-66. [DOI:10.1590/S1516-635X2012000100011]
9. Fouad, A.M. and H.K. El-Senousey. 2014. Nutritional factors affecting abdominal fat deposition in poultry: a review. Asian-Australasian Journal of Animal Science, 27: 1057-1068. [DOI:10.5713/ajas.2013.13702]
10. Gilliland, S.E. 1989. Acidophilus milk-products a review of potential benefits to consumers. Journal of Dairy Science, 72: 2483-2495. [DOI:10.3168/jds.S0022-0302(89)79389-9]
11. Goto, Y. and H. Kiyono. 2012. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunological Reviews, 245: 147-163. [DOI:10.1111/j.1600-065X.2011.01078.x]
12. Haddadin, M.S.Y., S.M. Abdulrahim., E.A.R. Hashlamoun and R.K. Robinson. 1996. The effect of Lactobacillus acidophilus on the production and commercial composition of hen's egg. Poultry Science, 66: 480-486.
13. Hermier, D. 1997. Lipoprotein metabolism and fattening in poultry. Journal of Nutrition, 127: 805S-808S. [DOI:10.1093/jn/127.5.805S]
14. Hibbing, M.E., C. Fuqua, M.R. Parsek and S.B. Peterson. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8: 15-25. [DOI:10.1038/nrmicro2259]
15. Huang, M.K., Y.J. Choi, R. Houde, J.W. Lee, B. Lee and X. Zhao. 2004. Effects of Lactobacilli and an acidophilic fungus on the production performanceand immune responses in broiler chickens. Poultry Science, 83: 788-795. [DOI:10.1093/ps/83.5.788]
16. Huang, Y. and Y. Zheng. 2010. The probiotic Lactobacillus acidophilus reduces cholesterol absorption through the down-regulation of Niemann-Pick C1-like 1 in Caco-2 cells. British Journal of Nutrition, 103: 473-478. [DOI:10.1017/S0007114509991991]
17. Homma, H. and T. Shinohara. 2004. Effects of probiotic Bacillus cereus toyoi on abdominal fat accumulation in the Japanese quail (Coturnix japonica). Animal Science Journal, 75: 37-41. [DOI:10.1111/j.1740-0929.2004.00152.x]
18. Iqramu, M.H., A. Nazim and A.M. Mohammad. 2017. Comparative analysis of body weight and serum biochemistry in broilers supplemented with some selected probiotics and antibiotic growth promoters. Journal of Advanced Veterinary and Animal Research, 4: 288-294. [DOI:10.5455/javar.2017.d226]
19. Kalavathy, R., N. Abdullah, S. Jalaludin and Y.W. Ho. 2003. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. British Poultry Science, 44: 139-144. [DOI:10.1080/0007166031000085445]
20. Kalavathy, R., N. Abdullah, S. Jalaludin, M. Wong and Y.W. Ho. 2009. Effects of Lactobacillus cultures on performance of laying hens, and total cholesterol, lipid and fatty acid composition of egg yolk. Journal of Science Food and Agriculture, 89: 482-486. [DOI:10.1002/jsfa.3477]
21. Kalavathy, R., N. Abdullah, S. Jalaludin and Y.W. Ho. 2010. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. British Poultry Science, 44: 139-144. [DOI:10.1080/0007166031000085445]
22. Koenen, M.E., J. Kramer, R. Van der Hulst, L. Heres, S.H.M. Jeurissen and W.J.A. Boersma. 2004. Immunomodulation by probiotic lactobacilli in layer- and meat-type chickens, British Poultry Science, 45: 355-366 [DOI:10.1080/00071660410001730851]
23. Kumar, A. and D. Kumar. 2015. Characterization of Lactobacillus isolated from dairy samples for probiotic properties. Anaerobe, 33: 117-123. [DOI:10.1016/j.anaerobe.2015.03.004]
24. La Ragione, R.M., A. Narbad, M.J. Gasson and M.J. Woodward. 2004. In vivo characterization of Lactobacillus johnsonii F19785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Letters in Appllied Microbiology, 38: 197-205. [DOI:10.1111/j.1472-765X.2004.01474.x]
25. Liu, L., X. Ni, D. Zeng, H. Wang, B. Jing and Z. Yin. 2016. Effect of a dietary probiotic, Lactobacillus johnsonii BS15, on growth performance, quality traits, antioxidant ability and nutritional and flavour substances of chicken meat. Animal Production Science, 57: 920-926. [DOI:10.1071/AN15344]
26. Munns, P.L. and S.L. Lamont. 1991. Research note: Effects age and immunization interval on the immunity response T-cell dependent and T-cell independent antigens in chickens. Poultry Science, 70: 2371-2374. [DOI:10.3382/ps.0702371]
27. Murry, J.A.C., J.A. Hinton and R.J. Buhr. 2006. Effect of botanical probiotic containing Lactobacilli on growth performance and populations of bacteria in the ceca, cloaca and carcass rinse of broiler chickens. International Journal of Poultry Science, 5: 344-350. [DOI:10.3923/ijps.2006.344.350]
28. Maiorka, A., E. Santin, S.M. Sugeta, J.C. Almeida and M. Macari. 2001. Utilization of prebiotics, probiotics and symbiotic in diets parameters. Brazilian Journal of Poultry Science, 3: 75-82. [DOI:10.1590/S1516-635X2001000100008]
29. Olnood, C.G., S.S.M. Beski, P.A. Iji and M. Choct. 2015. Delivery routes for probiotics: Effects on broiler performance,intestinal morphology and gut microflora. Animal Nutrition, 1: 192-202. [DOI:10.1016/j.aninu.2015.07.002]
30. Otutumi, L.C, M.B. Gois, E.R. de Moraes Garcia and M.M. Loddi. 2012. Variations on the efficacy of probiotics in poultry. In: Rigobelo EC (ed) Probiotics in animals. InTech, Rijeka. doi:10.5772/3319, 248. [DOI:10.5772/3319]
31. Pelicano, E.R.L, P.A. Souza, H.B.A. Souza, A. Oba, E.A. Norkus, L.M. Kodawara and T.M.A. Lima. 2004. Performance of broilers fed diets containing natural growth promoters. Brazilian Journal of Poultry Science, 6: 231-236. [DOI:10.1590/S1516-635X2004000400007]
32. Rahimi, S.H. and A. Khaksefidi. 2006. A comparison between the effects of a probiotic (Bioplus 2B) and an antibiotic (virginiamycin) on the performance of broiler chickens under heat stress condition. Iranian Journal of Veterinary Research, 7: 23-28.
33. Rinttila, T. and J. Apajalahti. 2013. Intestinal microbiota and metabolites implications for broiler chicken health and performance. Journal of Applied Poultry Research, 22: 647-658. [DOI:10.3382/japr.2013-00742]
34. Risoen, P.A., P. Ronning, I.K. Hegna and A.B. Kolsto. 2004. Characterization of broad range antimicrobial substance from Bacillus cereus. Journal of Applied Microbiology, 96: 648-655. [DOI:10.1046/j.1365-2672.2003.02139.x]
35. Royan, M, H. Alaie Kordghashlaghi, F. Afraz, M. Hashemi, S.M.F. Vahidi and R. Seighalani. 2018. Screening Lactobacilli isolates from Northern Iran Backyard chickens as bio-control strategy against Salmonella Enteritidis and Salmonella Typhimurium. kafkas universitesi veteriner fakultesi dergisi journal, 24: 423-430.
36. Salminen, S. and A. Von Wright. 1998. Lactic acid bacteria: microbiology and functional aspects. Marcel Dekker, New York.
37. Saminathan, M., C.C. Sieo, K. Ramasamy, N. Abdullah and Y.W. Ho. 2014. Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. Journal of. Scence of Food and Agriciculture, 94: 341-348. [DOI:10.1002/jsfa.6365]
38. Shokryazdan, P., M. Faseleh Jahromi, J.B. Liang, K. Ramasamy, C.C. Sieo and Y.W. Ho. 2017. Effects of a Lactobacillus salivarius mixture on performance, intestinal health and serum lipids of broiler chickens. PLoS ONE, 12: e0175959. [DOI:10.1371/journal.pone.0175959]
39. Surono, I.S. 2003. In vitro probiotic properties of indigenous dadhi lactic bacteria. Asian-Australasian Journal of Animal Sciences, 16: 726-731. [DOI:10.5713/ajas.2003.726]
40. Van der Zijpp, A.J. and F.R. Leenstra. 1980. Genetic analysis of the humoral immune response of White Leghorn chicks. Poultry Science, 59: 1363-1369. [DOI:10.3382/ps.0591363]
41. Vila, R., E. Esteve-Garcia and J. Brufau. 2010. Probiotic micro-organisms: 100 years of innovation and efficacy; modes of action (reviews). World Poultry Science Journal, 65: 369-380. [DOI:10.1017/S0043933910000474]
42. Wang, H., X. Ni, X. Qing, D. Zeng, M. Luo, L. Liu, G. Li, K. Pan and B. Jing. 2017. Live probiotic lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, Intestinal Development, and Gut Microflora in Broilers. Frontiers in Microbiology, 8: 1073. doi: 10.3389/fmicb.2017.01073. [DOI:10.3389/fmicb.2017.01073]
43. Wondmeneh, E., T. Getachew and T. Dessie. 2012. Immunomodulatory Effect of Effective Microorganisms (EM) in chickens. Research Journal of Immunology, 5(1): 17-23. [DOI:10.3923/rji.2012.17.23]
44. Yamamoto, M., F. Saleh, M. Tahir, A. Ohtsuka and K. Hayashi. 2007. The effect of Koji-fed (fermented distillery byproduct) on the growth performance and nutrient metabolizability in broiler. Journal of Poultry Science, 44: 291-296. [DOI:10.2141/jpsa.44.291]
45. Yamazaki, M., H. Ohtsu, Y. Yakabe, M. Kishima and H. Abe. 2012. In vitro screening of lactobacilli isolated from chicken excreta to control Salmonella Enteritidis and Typhimurium. British Poultry Science, 53: 183-189. [DOI:10.1080/00071668.2012.678814]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb