1. Abd El-Hack, M. E., Majrashi, K. A., Fakiha, K. G., Roshdy, M., Kamal, M., Saleh, R. M., & Alagawany, M. (2024). Effects of varying dietary microalgae levels on performance, egg quality, fertility, and blood biochemical parameters of laying Japanese quails (Coturnix coturnix Japonica). Poultry Science, 103(4), 103454.
https://doi.org/10.1016/j.psj.2024.103454 [
DOI:10.1016/j.psj.2024.103454.]
2. Abdel-Azeem, A. A. S., & Basyony, M. M. (2019). Some blood biochemical, antioxidant biomarkers, lipid peroxidation, productive performance and carcass traits of broiler chicks supplemented with Alpinia galangal rhizomes powder during heat stress. Egyptian Poultry Science Journal, 39(2), 345-363. https://doi.org10.21608/epsj.2019.35009. [
DOI:10.21608/epsj.2019.35009]
3. Das, G., Patra, J. K., Gonçalves, S., Romano, A., Gutiérrez-Grijalva, E. P., Heredia, J. B., ... & Shin, H. S. (2020). Galangal, the multipotent super spices: A comprehensive review. Trends in Food Science & Technology, 101, 50-62.
https://doi.org/10.1016/j.tifs.2020.04.032 [
DOI:10.1016/j.tifs.2020.04.032.]
4. Elghalid, O.A., El-Tahawy, W.S., Abdel Salam, H., & Elnaggar, A.S. (2021). Effect of dietary inclusion of galangal (Alpinia galanga) on growth performance and some physiological parameters of broiler chicks. Egyptian Poultry Science Journal. 41(4), 723-737. http://
https://doi.org/10.21608/epsj.2021.213300 [
DOI:10.21608/epsj.2021.213300.]
5. Forkus, B., Ritter, S., Vlysidis, M., Geldart, K., & Kaznessis, Y. N. (2017). Antimicrobial probiotics reduce Salmonella enterica in turkey gastrointestinal tracts. Scientific reports, 7(1), 40695. [
DOI:10.1038/srep40695]
6. Ibrahim, S. A., Omer, H. A. A., Ali, F. A. F., & El-Mallah, G. M. (2011). Performance of Rabbits Fed Diets Containing Different Levels of Energy and Lesser Galangal (Alpinia Officinarum). Journal of Agricultural Science, 3(4), 241-253.
https://doi.org/10.5539/jas.v3n4p241 [
DOI:10.5539/jas.v3n4p241.]
7. Ibtisham, F., Nawab, A., Niu, Y., Wang, Z., Wu, J., Xiao, M., & An, L. (2019). The effect of ginger powder and Chinese herbal medicine on production performance, serum metabolites and antioxidant status of laying hens under heat-stress condition. Journal of thermal biology, 81, 20-24.
https://doi.org/10.1016/j.jtherbio.2019.02.002 [
DOI:10.1016/j.jtherbio.2019.02.002.]
8. Kamalpour, S., Afzali, N., Naeimipour Younesi, H., & Ganji, F. (2021). Effect of Different Levels of Phytase Enzyme and Vitamin D3 on Production Performance and Egg Quality of Japanese Laying Quail. Research Animal Production, 12(34), 30-39. 20.1001.1.22518622.1400.12.34.10.7. [
DOI:10.52547/rap.12.34.30]
9. Li, J. T., Jing, Z., Chen, H. Q., Zheng, P. H., Lu, Y. P., Zhang, X. X., & Xian, J. A. (2024). Effects of Alpinia officinarum stems and leaves powder on growth performance, non-specific immunity, and intestinal microflora of Litopenaeus vannamei. Aquaculture Reports, 34, 101893.
https://doi.org/10.1016/j.aqrep.2023.101893 [
DOI:10.1016/j.aqrep.2023.101893.]
10. Lin, L. Y., Peng, C. C., Yeh, X. Y., Huang, B. Y., Wang, H. E., Chen, K. C., & Peng, R. Y. (2015). Antihyperlipidemic bioactivity of Alpinia officinarum (Hance) Farw Zingiberaceae can be attributed to the coexistance of curcumin, polyphenolics, dietary fibers and phytosterols. Food & function, 6(5), 1600-1610.
https://doi.org/10.1039/C4FO00901K [
DOI:10.1039/C4FO00901K.]
11. Mandal, D., Sarkar, T., & Chakraborty, R. (2023). Critical review on nutritional, bioactive, and medicinal potential of spices and herbs and their application in food fortification and nanotechnology. Applied Biochemistry and Biotechnology, 195(2), 1319-1513. [
DOI:10.1007/s12010-022-04132-y]
12. Nadhifah, N., Masu, M. E., Mulyati, M., Hartantyo, R. Y., Trihastuti, A., & Widiyanto, S. (2020, September). The effects of addition MarolisTM probiotics for broiler performance and meat quality (Gallus gallus domesticus Linnaeus, 1758). AIP Conference Proceedings, 2260, 1.
https://doi.org/10.1063/5.0015719 [
DOI:10.1063/5.0015719.]
13. Negm, S. H., & Ragheb, E. M. (2019). Effect of (Alpinia officinarum) hance on sex hormones and certain biochemical parameters of adult male experimental rats. Journal of Food and Dairy Sciences, 10(9), 315-322.
https://doi.org/10.21608/jfds.2019.55653 [
DOI:10.21608/JFDS.2019.55653.]
14. Ni, J., Chen, H., Zhang, C., Luo, Q., Qin, Y., Yang, Y., & Chen, Y. (2022). Characterization of Alpinia officinarum Hance polysaccharide and its immune modulatory activity in mice. Food & Function, 13(4), 2228-2237.
https://doi.org/10.1039/D1FO03949K [
DOI:10.1039/D1FO03949K.]
15. National Research Council. Nutrient Requirements of Poultry. 9th Revised Edition, National Academy Press. 1994; Washington, D C.
16. Oladokun, S., Dridi, S., & Adewole, D. (2023). An evaluation of the thermoregulatory potential of in ovo delivered bioactive substances (probiotic, folic acid, and essential oil) in broiler chickens. Poultry Science, 102(5), 102602.
https://doi.org/10.1016/j.psj.2023.102602 [
DOI:10.1016/j.psj.2023.102602.]
17. Oluwagbenga, E. M., & Fraley, G. S. (2023). Heat stress and poultry production: a comprehensive review. Poultry Science, 102(12), 103141.
https://doi.org/10.1016/j.psj.2023.103141 [
DOI:10.1016/j.psj.2023.103141.]
18. Ramlucken, U., Lalloo, R., Roets, Y., Moonsamy, G., van Rensburg, C. J., & Thantsha, M. S. (2020). Advantages of Bacillus-based probiotics in poultry production. Livestock Science, 241, 104215.
https://doi.org/10.1016/j.livsci.2020.104215 [
DOI:10.1016/j.livsci.2020.104215.]
19. Ratriyanto, A., & Mosenthin, R. (2018). Osmoregulatory function of betaine in alleviating heat stress in poultry. Journal of Animal physiology and Animal Nutrition, 102(6), 1634-1650.
https://doi.org/10.1111/jpn.12990 [
DOI:10.1111/jpn.12990.]
20. Sharifian, M., Hosseini-Vashan, S. J., Nasri, M. F., & Perai, A. H. (2019). Pomegranate peel powder forbroiler chickens under heat stress: Its influence on growth performance, carcass traits, blood metabolites, immunity, jejunal morphology, and meat quality. Livestock Science, 227:22-28.
https://doi.org/10.1016/j.livsci.2019.06.021 [
DOI:10.1016/j.livsci.2019.06.021.]
21. Tukaram, N. M., Biswas, A., Deo, C., Laxman, A. J., Monika, M., & Tiwari, A. K. (2022). Effects of para probiotic as replacements for antibiotic on performance, immunity, gut health and carcass characteristics in broiler chickens. Scientific Reports, 12(1), 22619.
https://doi.org/10.1038/s41598-022-27181-z [
DOI:10.1038/s41598-022-27181-z.]
22. Uyanga, V. A., Musa, T. H., Oke, O. E., Zhao, J., Wang, X., Jiao, H., Onagbesan, O. M., & Lin, H. (2023). Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Frontiers in Physiology, 14, 1123582.
https://doi.org/10.3389/fphys.2023.1123582 [
DOI:10.3389/fphys.2023.1123582.]
23. Uyanga, V. A., Oke, E. O., Amevor, F. K., Zhao, J., Wang, X., Jiao, H., Onagbesan, O. M., & Lin, H. (2022). Functional roles of taurine,L‐theanine, L‐citrulline, and betaine during heat stress in poultry. Journal of Animal Science and Biotechnology, 13, 23.
https://doi.org/10.1186/s40104-022-00675-6 [
DOI:10.1186/s40104-022-00675-6.]
24. Vahdatpour, T. (2018). Effects of feed additives on biochemical and immunological indices of blood and performance of Japanese quails (Coturnix coturnix Japonica). Research on Animal Production, 9(22), 40-51.
https://doi.org/10.29252/rap.9.22.40 [
DOI:10.29252/rap.9.22.40.]
25. Yang, H., Liu, Y., Cao, G., Liu, J., Xiao, S., Xiao, P., & Gao, H. (2024). Effects of lycopene on the growth performance, meat quality, cecal metagenome, and hepatic untargeted metabolome in heat stressed broilers. Poultry Science, 103(14), 104299.
https://doi.org/10.1016/j.psj.2024.104299 [
DOI:10.1016/j.psj.2024.104299.]
26. Zhao, L., Liang, J. Y., Zhang, J. Y., & Chen, Y. (2010). A novel diarylheptanoid bearing flavonol moiety from the rhizomes of Alpinia officinarum Hance. Chinese Chemical Letters, 21(2), 194-196.
https://doi.org/10.1016/j.cclet.2009.09.011 [
DOI:10.1016/j.cclet.2009.09.011.]
27. Zubair, A. K., & Leeson, S. (1996). Compensatory growth in the broiler chicken: a review. World's Poultry Science Journal, 52(2), 189-201.
https://doi.org/10.1079/WPS19960015 [
DOI:10.1079/WPS19960015.]