1. Abo-Ismail, M. K., Vander Voort, G., Squires, J. J., Swanson, K. C., Mandell, I. B., Liao, X., ... & Miller, S. P. (2014). Single nucleotide polymorphisms for feed efficiency and performance in crossbred beef cattle. BMC Genetics, 15, 1-14. [
DOI:10.1186/1471-2156-15-14]
2. Bouleftour, W., Boudiffa, M., Wade-Gueye, N. M., Bouet, G., Cardelli, M., Laroche, N., ... & Malaval, L. (2014). Skeletal development of mice lacking bone sialoprotein (BSP)-Impairment of long bone growth and progressive establishment of high trabecular bone mass. PloS One, 9(5), e95144. [
DOI:10.1371/journal.pone.0095144]
3. Cendron, F., Perini, F., Mastrangelo, S., Tolone, M., Criscione, A., Bordonaro, S., ... & Cassandro, M. (2020). Genome-wide SNP analysis reveals the population structure and the conservation status of 23 Italian chicken breeds. Animals, 10(8), 1441. [
DOI:10.3390/ani10081441]
4. Chen, L., Wang, X., Cheng, D., Chen, K., Fan, Y., Wu, G., ... & Ren, J. (2019). Population genetic analyses of seven Chinese indigenous chicken breeds in a context of global breeds. Animal Genetics, 50(1), 82-86. [
DOI:10.1111/age.12732]
5. Cheruiyot, E. K., Bett, R. C., Amimo, J. O., Zhang, Y., Mrode, R., & Mujibi, F. D. (2018). Signatures of selection in admixed dairy cattle in Tanzania. Frontiers in Genetics, 9, 607. [
DOI:10.3389/fgene.2018.00607]
6. Denninger, K. C., Litman, T., Marstrand, T., Moller, K., Svensson, L., Labuda, T., & Andersson, Å. (2015). Kinetics of gene expression and bone remodelling in the clinical phase of collagen-induced arthritis. Arthritis Research & Therapy, 17, 1-18. [
DOI:10.1186/s13075-015-0531-7]
7. Fariello, M. I., Servin, B., Tosser-Klopp, G., Rupp, R., Moreno, C., International Sheep Genomics Consortium, ... & Boitard, S. (2014). Selection signatures in worldwide sheep populations. PloS One, 9(8), e103813. [
DOI:10.1371/journal.pone.0103813]
8. Fay, J. C., & Wu, C. I. (2000). Hitchhiking under positive Darwinian selection. Genetics, 155(3), 1405-1413. [
DOI:10.1093/genetics/155.3.1405]
9. Fleming, D. S., Weigend, S., Simianer, H., Weigend, A., Rothschild, M., Schmidt, C., ... & Lamont, S. J. (2017). Genomic comparison of indigenous African and Northern European chickens reveals putative mechanisms of stress tolerance related to environmental selection pressure. G3: Genes, Genomes, Genetics, 7(5), 1525-1537. [
DOI:10.1534/g3.117.041228]
10. Goodman, L. D., Cope, H., Nil, Z., Ravenscroft, T. A., Charng, W. L., Lu, S., ... & Tan, Q. K. G. (2021). TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. The American Journal of Human Genetics, 108(9), 1669-1691. [
DOI:10.1016/j.ajhg.2021.06.019]
11. Guan, D., Martínez, A., Luigi‐Sierra, M. G., Delgado, J. V., Landi, V., Castelló, A., ... & Amills, M. (2021). Detecting the footprint of selection on the genomes of Murciano‐Granadina goats. Animal Genetics, 52(5), 683-693. [
DOI:10.1111/age.13113]
12. Ghoreishifar, S. M., Eriksson, S., Johansson, A. M., Khansefid, M., Moghaddaszadeh-Ahrabi, S., Parna, N., ... & Javanmard, A. (2020). Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genetics Selection Evolution, 52, 1-15. [
DOI:10.1186/s12711-020-00571-5]
13. Huang C., Zhao Q., Chen Q., Su Y., Ma Y., Ye S. & Zhao, Q. (2024). Runs of Homozygosity Detection and Selection Signature Analysis for Local Goat Breeds in Yunnan, China. Genes, 15, 31. [
DOI:10.3390/genes15030313]
14. Jahuey-Martínez F.J., Parra-Bracamonte G.M., Sifuentes-Rincón A.M. & Moreno-Medina V.R. )2019(. Signatures of selection in Charolais beef cattle identified by genome-wide analysis. Journal of Animal Breeding and Genetics, 136(5), 378-389. [
DOI:10.1111/jbg.12399]
15. Malik, A., Lee, E. J., Jan, A. T., Ahmad, S., Cho, K. H., Kim, J., & Choi, I. (2015). Network analysis for the identification of differentially expressed hub genes using myogenin knock-down muscle satellite cells. PLoS One, 10(7), e0133597. [
DOI:10.1371/journal.pone.0133597]
16. Maiorano, A. M., Lourenco, D. L., Tsuruta, S., Ospina, A. M. T., Stafuzza, N. B., Masuda, Y., ... & Silva, J. A. I. D. V. (2018). Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS One, 13(8), e0200694. [
DOI:10.1371/journal.pone.0200694]
17. Moaeen-ud-Din, M., Danish Muner, R., & Khan, M. S. (2022). Genome wide association study identifies novel candidate genes for growth and body conformation traits in goats. Scientific Reports, 12(1), 9891. [
DOI:10.1038/s41598-022-14018-y]
18. Nielsen, R., & Yang, Z. (1998). Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 148(3), 929-936. [
DOI:10.1093/genetics/148.3.929]
19. Nielsen, R., Williamson, S., Kim, Y., Hubisz, M. J., Clark, A. G., & Bustamante, C. (2005). Genomic scans for selective sweeps using SNP data. Genome Research, 15(11), 1566-1575. [
DOI:10.1101/gr.4252305]
20. Olsen, H. G., Hayes, B. J., Kent, M. P., Nome, T., Svendsen, M., & Lien, S. (2010). A genome wide association study for QTL affecting direct and maternal effects of stillbirth and dystocia in cattle. Animal Genetics, 41(3), 273-280. [
DOI:10.1111/j.1365-2052.2009.01998.x]
21. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., ... & Sham, P. C. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3), 559-575. [
DOI:10.1086/519795]
22. Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T. M., Fries, R., ... & Simianer, H. (2014). Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genetics, 10(2), e1004148. [
DOI:10.1371/journal.pgen.1004148]
23. Rahimmadar, S., Ghaffari, M., Mokhber, M. & Williams, J. L. (2021). Linkage disequilibrium and effective population size of buffalo populations of Iran, Turkey, Pakistan, and Egypt using a medium density SNP array. Frontiers in Genetics, 12, 608186. [
DOI:10.3389/fgene.2021.608186]
24. Saravanan, K.A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G.K., Dutt, T., Mishra, B.P. & Singh, R.K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. [
DOI:10.1016/j.ygeno.2021.02.009]
25. Salehi, A., Nasiri, K., Aminafshar, M., Sayaadnejad, M.B. & Sobhani, R. (2015). The Association of Bovine Osteopontin (OPN) Gene with Milk Production Traits in Iranian Holstein Bulls. Iranina Journal of Biotechnology, (1), 43-48. [
DOI:10.15171/ijb.1092]
26. Silva, D.B.S., Fonseca, L.F.S., Pinheiro, D.G., Magalhães, A.F.B., Muniz, M.M.M., Ferro, J.A., Baldi, F., Chardulo, L.A.L., Schnabel, R.D. & Taylor, J.F. (2020). Spliced Genes in Muscle from Nelore Cattle and Their Association with Carcass and Meat Quality. Scientific Reports, 10, 14701. [
DOI:10.1038/s41598-020-71783-4]
27. Sun, X., Niu, Q., Jiang, J., Wang, G., Zhou, P., Li, J., Chen, C., Liu, L., Xu, L. & Ren, H. (2023). Identifying Candidate Genes for Litter Size and Three Morphological Traits in Youzhou Dark Goats Based on Genome-Wide SNP Markers. Genes, 14, 1183. [
DOI:10.3390/genes14061183]
28. Tang, K., Thornton, K.R. & Stoneking, M. (2007). A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biology, 5, e171. [
DOI:10.1371/journal.pbio.0050171]
29. Toro-Ospina, A.M., Herrera Rios, A.C., Bizarria Santos, W., Pimenta Schettini, G. & Vallejo Aristizabal, V.H. (2022). Genetic Architecture and Signatures of Selection in the Caqueteño Creole (Colombian Native Cattle). Diversity, 14, 828. [
DOI:10.3390/d14100828]
30. Waineina, R.W., Okeno, T.O., Ilatsia, E.D. & Ngeno, K. (2022). Selection Signature Analyses Revealed Genes Associated With Adaptation, Production, and Reproduction in Selected Goat Breeds in Kenya. Frontiers in Genetics,13, 858923. [
DOI:10.3389/fgene.2022.858923]
31. Voight, B.F., Kudaravalli, S., Wen X. & Pritchard, J.K. (2006). A map of recent positive selection in the human genome. PLoS Biology, 4, e72. [
DOI:10.1371/journal.pbio.0040072]