1. Akter, Y., Hutchison, C., Liu, S., & O'SHEA, C. J. (2017, February). Comparison of wheat and maize-based diets on growth performance and meat quality of broiler chickens. In 28th Annual Australian Poultry Science Symposium (p. 233).
2. ASAE. (1997). Cubes, Pellets, and Crumbles-Definitions and Methods for Determining Density, Durability, and Moisture Content.
3. Bajaj, B. K., & Wani, M. A. (2015). Purification and characterization of a novel phytase from Nocardia sp. MB 36. Biocatalysis and Biotransformation, 33(3), 141-149. [
DOI:10.3109/10242422.2015.1083014]
4. Behnke, K. C. (2001). Factors influencing pellet quality. Feed Technology, 5(4), 19-22.
5. Bhuiyan, M. (2011). Variation in Quality of Maize Grain Due to Source, Moisture Content and Processing. Ph.D. Thesis, University of New England. AUS.
6. Da Silva, N. A., & Srikrishnan, S. (2012). Introduction and expression of genes for metabolic engineering applications in Saccharomyces cerevisiae. FEMS Yeast Research, 12(2), 197-214. [
DOI:10.1111/j.1567-1364.2011.00769.x]
7. Emami, N. K., Naeini, S. Z., & Ruiz-Feria, C. (2013). Growth performance, digestibility, immune response and intestinal morphology of male broilers fed phosphorus deficient diets supplemented with microbial phytase and organic acids. Livestock Science, 157(2-3), 506-513. [
DOI:10.1016/j.livsci.2013.08.014]
8. Fuentes, C., Orozco, L., Vicente, J., Velasco, X., & Menconi, A. (2013). Effect of a lactic acid bacteria based probiotic, Floramax-B11®, on performance, bone qualities, and morphometric analysis of broiler chickens: an economic analysis. Biological Systems, 2(113), 2. [
DOI:10.4172/2329-6577.1000113]
9. Ghorbani Nasrabadi, R., Greiner, R., Yamchi, A., & Nourzadeh Roshan, E. (2018). A novel purple acid phytase from an earthworm cast bacterium. Journal of the Science of Food and Agriculture, 98(10), 3667-3674. [
DOI:10.1002/jsfa.8845]
10. Greiner, R., Konietzny, U., & Jany, K.-D. (1993). Purification and characterization of two phytases from Escherichia coli. Archives of Biochemistry and Biophysics, 303(1), 107-113. [
DOI:10.1006/abbi.1993.1261]
11. Haraldsson, A.-K., Veide, J., Andlid, T., Alminger, M. L., & Sandberg, A.-S. (2005). Degradation of phytate by high-phytase Saccharomyces cerevisiae strains during simulated gastrointestinal digestion. Journal of AGricultural and Food Chemistry, 53(13), 5438-5444. [
DOI:10.1021/jf0478399]
12. Heinonen, J. K., & Lahti, R. J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113(2), 313-317. [
DOI:10.1016/0003-2697(81)90082-8]
13. Iji, P., Hughes, R. J., Choct, M., & Tivey, D. (2001). Intestinal structure and function of broiler chickens on wheat-based diets supplemented with a microbial enzyme. Asian-Australasian Journal of Animal Sciences, 14(1), 54-60. [
DOI:10.5713/ajas.2001.54]
14. ISO, E. (2020). 30024. Animal feeding stuffs-Determination of phytase activity. 2009.
15. Kaźmierczak-Siedlecka, K., Ruszkowski, J., Fic, M., Folwarski, M., & Makarewicz, W. (2020). Saccharomyces boulardii CNCM I-745: A non-bacterial microorganism used as probiotic agent in supporting treatment of selected diseases. Current Microbiology, 77, 1987-1996. [
DOI:10.1007/s00284-020-02053-9]
16. Kim, W., Donalson, L., Herrera, P., Woodward, C., Kubena, L., Nisbet, D., & Ricke, S. (2004). Research note: Effects of different bone preparation methods (fresh, dry, and fat-free dry) on bone parameters and the correlations between bone breaking strength and the other bone parameters. Poultry Science, 83(10), 1663-1666. [
DOI:10.1093/ps/83.10.1663]
17. Lei, X., & Stahl, C. (2001). Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology, 57, 474-481. [
DOI:10.1007/s002530100795]
18. Lemons, M., & Moritz, J. (2016). The effect of feeder space access and crumble-or pellet-to-fine ratio on 38-day-old broiler performance. Journal of Applied Poultry Research, 25(1), 12-20. [
DOI:10.3382/japr/pfv053]
19. Lu, H., Kühn, I., Bedford, M. R., Whitfield, H., Brearley, C., Adeola, O., & Ajuwon, K. M. (2019). Effect of phytase on intestinal phytate breakdown, plasma inositol concentrations, and glucose transporter type 4 abundance in muscle membranes of weanling pigs. Journal of Animal Science, 97(9), 3907-3919. [
DOI:10.1093/jas/skz234]
20. Mancabelli, L., Ferrario, C., Milani, C., Mangifesta, M., Turroni, F., Duranti, S., & Ventura, M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology, 18(12), 4727-4738. [
DOI:10.1111/1462-2920.13363]
21. Mirzaie, S., Zaghari, M., Aminzadeh, S., & Shivazad, M. (2012). The effects of non-starch polysaccharides content of wheat and xylanase supplementation on the intestinal amylase, aminopeptidase and lipase activities, ileal viscosity and fat digestibility in layer diet. Iranian Journal of Biotechnology, 10(3), 208-214.
22. Mohammadi, Ghasem Abadi, M., Riahi, M., Shivazad, M., Zali, A., & Adibmoradi, M. (2014). Efficacy of wheat based vs. corn based diet formulated based on digestible amino acid method on performances, carcass traits, blood parameters, immunity response, jejunum histomorphology, cecal microflora and excreta moisture in broiler chickens. Iranian Journal of Applied Animal Science, 4(1), 105-110.
23. Moita, V. H. C., Duarte, M. E., & Kim, S. W. (2021). Supplemental effects of phytase on modulation of mucosa-associated microbiota in the jejunum and the impacts on nutrient digestibility, intestinal morphology, and bone parameters in broiler chickens. Animals, 11(12), 3351. [
DOI:10.3390/ani11123351]
24. Moradi, A., Moradi, S., & Abdollahi, M. R. (2018). Influence of feed ingredients with pellet-binding properties on physical pellet quality, growth performance, carcass characteristics and nutrient retention in broiler chickens. Animal Production Science, 59(1), 73-81. [
DOI:10.1071/AN17109]
25. Moré, M. I., & Vandenplas, Y. (2018). Saccharomyces boulardii CNCM I-745 improves intestinal enzyme function: a trophic effects review. Clinical Medicine Insights: Gastroenterology, 11, 1179552217752679. [
DOI:10.1177/1179552217752679]
26. Moss, A. F. (2020). Review of the nutrient content of Australian feed ingredients.
27. Nari, N., Ghasemi, H., Hajkhodadadi, I., & Farahani, A. K. (2020). Intestinal microbial ecology, immune response, stress indicators, and gut morphology of male broiler chickens fed low-phosphorus diets supplemented with phytase, butyric acid, or Saccharomyces boulardii. Livestock Science, 234, 103975. [
DOI:10.1016/j.livsci.2020.103975]
28. Nollet, L., Huyghebaert, G., & Spring, P. (2008). Effect of different levels of dietary organic (Bioplex) trace minerals on live performance of broiler chickens by growth phases. Journal of Applied Poultry Research, 17(1), 109-115. [
DOI:10.3382/japr.2007-00049]
29. Peng, Y., Guo, Y., & Yuan, J. (2003). Effects of microbial phytase replacing partial inorganic phosphorus supplementation and xylanase on the growth performance and nutrient digestibility in broilers fed wheat-based diets. Asian-Australasian Journal of Animal Sciences, 16(2), 239-247. [
DOI:10.5713/ajas.2003.239]
30. Ptak, A., Bedford, M. R., Świątkiewicz, S., Żyła, K., & Jozefiak, D. (2015). Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS One, 10(3), e0119770. [
DOI:10.1371/journal.pone.0119770]
31. Rutherfurd, S., Chung, T., Thomas, D., Zou, M., & Moughan, P. (2012). Effect of a novel phytase on growth performance, apparent metabolizable energy, and the availability of minerals and amino acids in a low-phosphorus corn-soybean meal diet for broilers. Poultry Science, 91(5), 1118-1127. [
DOI:10.3382/ps.2011-01702]
32. Saeedi Aval Noughabi, K., Hassnabadi, A., Nasiri Moghaddam, H., & Pournia, K. (2015). A Comparison Between the First Iranian Commercial Phytase and an Imported Phytas on the Performance, Blood Parameters and Nutrient Digestibility of Male Broiler Chicken Fed Different Dietary Phosphorous Levels. Research on Animal Production, 6(11), 60-70. [In Persian]
33. Salmanian, M., Shams Shargh, M., Yamchi, A., & Mohammadi Ghasem Abadi, M. H. (2022). Effect of Grain Type and Phytase Enzyme on Growth Performance, Cecum Microbial Population, Carcass and Bone Characteristics of Broiler Chickens. Research on Animal Production, 13(38), 8-18. [In Persian] [
DOI:10.52547/rap.13.38.8]
34. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463-5467. [
DOI:10.1073/pnas.74.12.5463]
35. Sanni, C. O. (2017). Evaluation of techniques for improving phosphorus utilisation in meat poultry. Nottingham Trent University (United Kingdom).
36. Shaw, A., Hess, J., Blake, J., & Ward, N. (2011). Assessment of an experimental phytase enzyme product on live performance, bone mineralization, and phosphorus excretion in broiler chickens. Journal of Applied Poultry Research, 20(4), 561-566. [
DOI:10.3382/japr.2011-00389]
37. Smeets, N., Nuyens, F., Van Campenhout, L., Delezie, E., Pannecoucque, J., & Niewold, T. (2015). Relationship between wheat characteristics and nutrient digestibility in broilers: comparison between total collection and marker (titanium dioxide) technique. Poultry Science, 94(7), 1584-1591. [
DOI:10.3382/ps/pev116]
38. Wu, Y., Ravindran, V., Thomas, D., Birtles, M., & Hendriks, W. (2004). Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. British poultry science, 45(1), 76-84. [
DOI:10.1080/00071660410001668897]
39. Zimonja, O., Stevnebø, A., & Svihus, B. (2007). Nutritional value of diets for broiler chickens as affected by fat source, amylose level and diet processing. Canadian Journal of Animal Science, 87(4), 553-562. [
DOI:10.4141/CJAS07044]