دوره 14، شماره 42 - ( زمستان 1402 )                   جلد 14 شماره 42 صفحات 19-11 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani R, Jonmohammadi H, Mirgheleng S A, Didehban Y. (2023). Determination of Metabolizable Energy Value in Canola Meal with and without Enzymes Addition By Regression Method in Adult Leghorn Roosters. rap. 14(42), 11-19.
URL: http://rap.sanru.ac.ir/article-1-1357-fa.html
زمانی روناک، جانمحمدی حسین، میرقلنج سید علی، دیده بان یوسف. تعیین انرژی قابل سوخت و ساز کنجاله کانولا با و بدون آنزیم به‎روش رگرسیون در خروس‌‎های بالغ لگهورن پژوهشهاي توليدات دامي 1402; 14 (42) :19-11

URL: http://rap.sanru.ac.ir/article-1-1357-fa.html


گروه علوم دامی، دانشگاه تبریز
چکیده:   (344 مشاهده)
چکیده مبسوط
مقدمه و هدف: کنجاله کانولا علاوه بر پروتئین زیاد بهدلیل داشتن مقدار نسبتاً زیادی کربوهیدرات­‌ها و چربی‌­خام می­‌تواند نقش قابلتوجهی در مقدار تأمین انرژی خوراک طیور داشته باشد. مقدار AMEn در جدول NRC برای کنجاله کانولا 2000 کیلوکالری در کیلوگرم می‌­باشد. مقدار انرژِی قابل متابولیسم کنجاله کانولا در جداول ترکیبات شیمیایی مواد خوراکی ایران توسط مرکز تحقیقات علوم دامی کشور منتشر نشده است. ارزشیابی یک خوراک با تعیین مواد مغذی آن و اندازهگیری انرژی قابل متابولیسم آن تکمیل می‌شود. روش‌­های متفاوتی برای تعیین مقادیر انرژی قابل سوخت و ساز در طیور وجود دارد که هرکدام دارای مزایا و معایبی است. روش رگرسیون از جمله روش­های تعیین انرژی قابل متابولیسم است که امکان مطالعه انرژی قابل متابولیسم را در جیرههای غذایی عملی و در سطوح مختلف فراهم میآورد. هدف از این آزمایش تعیین مقادیر انرژی قابل سوخت و ساز ظاهری تصحیح شده برای نقطه صفر تعادل نیتروژن (AMEn) کنجاله­‌های کانولا با و بدون آنزیم بهروش رگرسیون در خروسهای بالغ لگهورن بود.
مواد و روش‌ها: نمونه­‌های کنجاله‌­ی کانولا از کارخانجات خوراک­ دام و طیور شهرستان تبریز تهیه و ترکیبات شیمیایی آن مطابق روش­های استاندارد اندازه‌­گیری شد. از 48 قطعه خروس بالغ لگهورن با 6 تکرار در قالب طرح کاملاً تصادفی بهترتیب فاکتوریل (4×2) (دو سطح صفر و 375×  چهار سطح کنجاله کانولا صفر،21،14،7) از روش رگرسیون با جایگزینی کنجاله کانولا در جیره پایه ذرت-کنجاله سویا استفاده شد.
یافته­‌ها: میانگین ماده‌­خشک، خاکستر، پروتئین خام، عصاره اتری، فیبر نامحلول در شوینده خنثی (NDF) و فیبر نامحلول در شوینده اسیدی ( (ADFدر این آزمایش بهترتیب 88/5، 6/8، 34/4، 6/7، 34/5، 20/5 درصد و انرژی خام کنجاله کانولا نیز برابر 4324 کیلوکالری در کیلوگرم بدست آمد.
با افزایش سطح کنجاله کانولا در جیره­‌های غذایی آزمایشی مقادیر قابلیت سوخت و ساز ماده­‌خشک، ماده‌­آلی، AMEn و بازده انرژی­‌خام بهطور معنی‌­داری کاهش یافت (0/05p<). کاهش مقدار AMEn برابر 7/4 درصد معادل 244 کیلوکالری در کیلو­گرم در جیره غذایی حاوی 21 درصد کنجاله کانولا در مقایسه با جیره غذایی فاقد کنجاله کانولا بود در اثر افزودن آنزیم، مقدار AMEn در جیره­‌های غذایی حاوی کنجاله کانولا 64 کیلوکالری در کیلوگرم بهبود نشان داد. معادلات برآوردکننده AMEn کنجاله کانولا با و بدون آنزیم از ضریب تبیین بالایی بهترتیب برابر با 0/83 و 0/79 برخوردار بودند. مقدار AMEn  کنجاله کانولا با و بدون آنزیم بهروش رگرسیون بهترتیب برابر 1985 و 1838 کیلو کالری در کیلوگرم برآورد شد.
نتیجه‌گیری: ارقام حاصله برای AMEn کنجاله کانولا در مقایسه با ارقام گزارش شده در جداول استانداردهای غذایی NRC (1994)کمتر بوده و لذا تنظیم جیرههای غذایی با مقادیر AMEn  بهدست آمده در این پژوهش احتمالاً می­تواند در پیشبینی عملکرد پرنده موثر باشد.
متن کامل [PDF 2843 kb]   (66 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه طیور
دریافت: 1401/11/14 | ویرایش نهایی: 1402/10/27 | پذیرش: 1402/3/17 | انتشار: 1402/10/26

فهرست منابع
1. Abbasi, B., Abbasi, B., Fadaeli, H., Zahdifar, M., Mirhadi, S., Grami, A., Timuranjad, N. S., & Alavi, M. (2014). Tables of chemical composition of Iran's livestock and poultry feed sources (In Persian) https://civilica.com/doc/1067428
2. Adewole, D., Rogiewicz, A., Dyck, B., & Slominski, B. (2016). Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Animal Feed Science and Technology, 222, 17-30. [DOI:10.1016/j.anifeedsci.2016.09.012]
3. Agyekum, A. K., & Woyengo, T. A. (2022). Nutritive value of expeller/cold-pressed canola meal and pre-pressed solvent-extracted carinata meal for broiler chicken. Poultry Science, 101(1), 101528. [DOI:10.1016/j.psj.2021.101528]
4. AOAC. (2005). Association of Official Analytical Chemists 2005. Official methods of analysis. In: Association of Official Analytical Chemists International Gaithersburg (MD).
5. Assadi, E., Janmohammadi, H., Taghizadeh, A., & Alijani, S. (2011). Nutrient composition of different varieties of full-fat canola seed and nitrogen-corrected true metabolizable energy of full-fat canola seed with or without enzyme addition and thermal processing. Journal of Applied Poultry Research, 20(1), 95-101. [DOI:10.3382/japr.2010-00201]
6. Bell, J. (1993). Factors affecting the nutritional value of canola meal: a review. Canadian Journal of Animal Science, 73(4), 689-697. [DOI:10.4141/cjas93-075]
7. Bourdillon, A., Carré, B., Conan, L., Duperray, J., Huyghebaert, G., Leclercq, B., Lessire, M., McNab, J., & Wiseman, J. (1990). European reference method for the in vivo determination of metabolisable energy with adult cockerels: reproducibility, effect of food intake and comparison with individual laboratory methods. British Poultry Science, 31(3), 557-565. [DOI:10.1080/00071669008417287]
8. Coelho, K. S., Giuntini, E. B., Grande, F., da Silva Dias, J., Purgatto, E., de Melo Franco, B. D. G., Lajolo, F. M., & de Menezes, E. W. (2019). 12th IFDC 2017 Special Issue-Brazilian Food Composition Table (TBCA): development and functionalities of the online version. Journal of Food Composition and Analysis, 84, 103287. [DOI:10.1016/j.jfca.2019.103287]
9. Council, N.-N. R. (1994). Nutrient requirements of poultry. In: National Academy Press Washington.
10. Dawoodi, J., Golzaradbi, S., Haji Asghari, S., Moghadam, J. A., & Farmarzi, A. (2007). The effect of different levels of rapeseed meal replacing soybeans on the performance of broiler chickens, . Ecology of Crop Plants (New Agricultural Knowledge), 3(1), 27-39 (In Persian).
11. Gallardo, C., Dadalt, J. C., Kiarie, E., & Neto, M. T. (2017). Effects of multi-carbohydrase and phytase on standardized ileal digestibility of amino acids and apparent metabolizable energy in canola meal fed to broiler chicks. Poultry Science, 96(9), 3305-3313. [DOI:10.3382/ps/pex141]
12. García, M., Lázaro, R., Latorre, M., Gracia, M., & Mateos, G. (2008). Influence of enzyme supplementation and heat processing of barley on digestive traits and productive performance of broilers. Poultry Science, 87(5), 940-948. [DOI:10.3382/ps.2007-00266]
13. Kalvandi, O., Janmohammadi, H., & Ghashlag, M. (2015). Effect of enzyme supplementation on metabolizable energy and apparent nitrogen retention in broiler diets based on corn-soybean meal. Journal of Animal Science Research, 25(1), 65-78.
14. Kang, H. K., Park, S. B., Jeon, J. J., Kim, H. S., Park, K. T., Kim, S. H., Hong, E. C., & Kim, C. H. (2018). Effect of increasing levels of apparent metabolizable energy on laying hens in barn system. Asian-Australasian Journal of Animal Sciences, 31(11), 1766. [DOI:10.5713/ajas.17.0846]
15. Khajali, F., & Slominski, B. (2012). Factors that affect the nutritive value of canola meal for poultry. Poultry Science, 91(10), 2564-2575. [DOI:10.3382/ps.2012-02332]
16. Kocher, A., Choct, M., Ross, G., Broz, J., & Chung, T. (2003). Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. Journal of Applied Poultry Research, 12(3), 275-283. [DOI:10.1093/japr/12.3.275]
17. Lee, T., Duling, D., Liu, S., & Latour, D. SAS Institute Inc., Cary, NC.
18. Leeson, S., & Summers, J. (2001). Nutrition of the chicken 4th Ed. Guelph, Ontario, Canada: University Books.
19. Losada, B., García-Rebollar, P., Álvarez, C., Cachaldora, P., Ibáñez, M., Méndez, J., & De Blas, J. (2010). The prediction of apparent metabolisable energy content of oil seeds and oil seed by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 160(1-2), 62-72. [DOI:10.1016/j.anifeedsci.2010.06.012]
20. Meng, X., & Slominski, B. (2005). Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poultry Science, 84(8), 1242-1251. [DOI:10.1093/ps/84.8.1242]
21. Nadeem, M., Anjum, M., Khan, A., & Azim, A. (2005). Effect of dietary supplementation of non-starch polysaccharide degrading enzymes on growth performance of broiler chicks. Pakistan Veterinary Journal, 25(4), 183.
22. Nakamura, Y.-N., Orito, H., Tsuneishi, E., Hirano, K., Kato, N., Shoji, A., Kamiya, M., & Nakanishi, Y. (2008). Changes in plasma composition of Japanese black steers during grazing and fattening periods. Journal of Applied Animal Research, 34(2), 157-161. [DOI:10.1080/09712119.2008.9706962]
23. Newkirk, R., Classen, H., & Edney, M. (2003). Effects of prepress-solvent extraction on the nutritional value of canola meal for broiler chickens. Animal Feed Science and Technology, 104(1-4), 111-119. [DOI:10.1016/S0377-8401(02)00331-0]
24. Nouri-Emamzadeh, A., Yaghobfar, A., Sadeghi, A., Mirhadi, S., & Chamani, M. (2008). Determination of Metabolizable Energy in Soybean, Sunflower and Canola Meals Using Caecectomised and Intact Adult Cockerels. JOURNAL OF ANIMAL AND VETERINARY ADVANCES, 7(3), 235-238.
25. Olukosi, O., Kasprzak, M., Kightley, S., Carre, P., Wiseman, J., & Houdijk, J. (2017). Investigations of the nutritive value of meals of double-low rapeseed and its influence on growth performance of broiler chickens. Poultry Science, 96(9), 3338-3350. [DOI:10.3382/ps/pex157]
26. Rogiewicz, A., & Slominski, B. (2019). Low-glucosinolate rapeseed meal as a valuable source of protein for poultry. Proc. 22nd. Eur. Sympo. Poult. Nutr. Gdansk, Poland, 15-24.
27. Sibbald, I. (1980). Metabolizable energy in poultry nutrition. BioScience, 30(11), 736-741. [DOI:10.2307/1308333]
28. Sibbald, I. (1982). Measurement of bioavailable energy in poultry feedingstuffs: a review. Canadian Journal of Animal Science, 62(4), 983-1048. [DOI:10.4141/cjas82-123]
29. Slominski, B. A., & Campbell, L. D. (1990). Non‐starch polysaccharides of canola meal: quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation. Journal of the Science of Food and Agriculture, 53(2), 175-184. [DOI:10.1002/jsfa.2740530205]
30. Smits, C. H., & Annison, G. (1996). Non-starch plant polysaccharides in broiler nutrition-towards a physiologically valid approach to their determination. World's poultry science journal, 52(2), 203-221. [DOI:10.1079/WPS19960016]
31. Veluri, S., & Olukosi, O. A. (2020). Metabolizable energy of soybean meal and canola meal as influenced by the reference diet used and assay method. Animals, 10(11), 2132. [DOI:10.3390/ani10112132]
32. Watts, E. S., Rose, S. P., Mackenzie, A. M., & Pirgozliev, V. R. (2020). The effects of supercritical carbon dioxide extraction and cold-pressed hexane extraction on the chemical composition and feeding value of rapeseed meal for broiler chickens. Archives of animal nutrition, 74(1), 57-71. [DOI:10.1080/1745039X.2019.1659702]
33. Wise, T., & Adeola, O. (2023). Validation of a 3-point model for the determination of energy values using the regression method in broiler chickens. Poultry Science, 102(2), 102336. [DOI:10.1016/j.psj.2022.102336]
34. Zhong, R., & Adeola, O. (2019). Energy values of solvent-extracted canola meal and expeller-derived canola meal for broiler chickens and growing pigs determined using the regression method. Journal of Animal Science, 97(8), 3415-3425. 10.1093/jas/skz215Fadaeli, H., Zahdifar, M., Mirhadi, S., Grami, A., Timuranjad, N. S., & Alavi, M. (2014). Tables of chemical composition of Iran's livestock and poultry feed sources (In Persian) https://civilica.com/doc/1067428 []
35. Adewole, D., Rogiewicz, A., Dyck, B., & Slominski, B. (2016). Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Animal Feed Science and Technology, 222, 17-30.
36. Agyekum, A. K., & Woyengo, T. A. (2022). Nutritive value of expeller/cold-pressed canola meal and pre-pressed solvent-extracted carinata meal for broiler chicken. Poultry Science, 101(1), 101528.
37. AOAC. (2005). Association of Official Analytical Chemists 2005. Official methods of analysis. In: Association of Official Analytical Chemists International Gaithersburg (MD).
38. Assadi, E., Janmohammadi, H., Taghizadeh, A., & Alijani, S. (2011). Nutrient composition of different varieties of full-fat canola seed and nitrogen-corrected true metabolizable energy of full-fat canola seed with or without enzyme addition and thermal processing. Journal of Applied Poultry Research, 20(1), 95-101.
39. Bell, J. (1993). Factors affecting the nutritional value of canola meal: a review. Canadian Journal of Animal Science, 73(4), 689-697.
40. Bourdillon, A., Carré, B., Conan, L., Duperray, J., Huyghebaert, G., Leclercq, B., Lessire, M., McNab, J., & Wiseman, J. (1990). European reference method for the in vivo determination of metabolisable energy with adult cockerels: reproducibility, effect of food intake and comparison with individual laboratory methods. British Poultry Science, 31(3), 557-565.
41. Coelho, K. S., Giuntini, E. B., Grande, F., da Silva Dias, J., Purgatto, E., de Melo Franco, B. D. G., Lajolo, F. M., & de Menezes, E. W. (2019). 12th IFDC 2017 Special Issue–Brazilian Food Composition Table (TBCA): development and functionalities of the online version. Journal of Food Composition and Analysis, 84, 103287.
42. Council, N.-N. R. (1994). Nutrient requirements of poultry. In: National Academy Press Washington.
43. Dawoodi, J., Golzaradbi, S., Haji Asghari, S., Moghadam, J. A., & Farmarzi, A. (2007). The effect of different levels of rapeseed meal replacing soybeans on the performance of broiler chickens, . Ecology of Crop Plants (New Agricultural Knowledge), 3(1), 27-39 (In Persian).
44. Gallardo, C., Dadalt, J. C., Kiarie, E., & Neto, M. T. (2017). Effects of multi-carbohydrase and phytase on standardized ileal digestibility of amino acids and apparent metabolizable energy in canola meal fed to broiler chicks. Poultry Science, 96(9), 3305-3313.
45. García, M., Lázaro, R., Latorre, M., Gracia, M., & Mateos, G. (2008). Influence of enzyme supplementation and heat processing of barley on digestive traits and productive performance of broilers. Poultry Science, 87(5), 940-948.
46. Kalvandi, O., Janmohammadi, H., & Ghashlag, M. (2015). Effect of enzyme supplementation on metabolizable energy and apparent nitrogen retention in broiler diets based on corn-soybean meal. Journal of Animal Science Research, 25(1), 65-78.
47. Kang, H. K., Park, S. B., Jeon, J. J., Kim, H. S., Park, K. T., Kim, S. H., Hong, E. C., & Kim, C. H. (2018). Effect of increasing levels of apparent metabolizable energy on laying hens in barn system. Asian-Australasian Journal of Animal Sciences, 31(11), 1766.
48. Khajali, F., & Slominski, B. (2012). Factors that affect the nutritive value of canola meal for poultry. Poultry Science, 91(10), 2564-2575.
49. Kocher, A., Choct, M., Ross, G., Broz, J., & Chung, T. (2003). Effects of enzyme combinations on apparent metabolizable energy of corn-soybean meal-based diets in broilers. Journal of Applied Poultry Research, 12(3), 275-283.
50. Lee, T., Duling, D., Liu, S., & Latour, D. SAS Institute Inc., Cary, NC.
51. Leeson, S., & Summers, J. (2001). Nutrition of the chicken 4th Ed. Guelph, Ontario, Canada: University Books.
52. Losada, B., García-Rebollar, P., Álvarez, C., Cachaldora, P., Ibáñez, M., Méndez, J., & De Blas, J. (2010). The prediction of apparent metabolisable energy content of oil seeds and oil seed by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Animal Feed Science and Technology, 160(1-2), 62-72.
53. Meng, X., & Slominski, B. (2005). Nutritive values of corn, soybean meal, canola meal, and peas for broiler chickens as affected by a multicarbohydrase preparation of cell wall degrading enzymes. Poultry Science, 84(8), 1242-1251.
54. Nadeem, M., Anjum, M., Khan, A., & Azim, A. (2005). Effect of dietary supplementation of non-starch polysaccharide degrading enzymes on growth performance of broiler chicks. Pakistan Veterinary Journal, 25(4), 183.
55. Nakamura, Y.-N., Orito, H., Tsuneishi, E., Hirano, K., Kato, N., Shoji, A., Kamiya, M., & Nakanishi, Y. (2008). Changes in plasma composition of Japanese black steers during grazing and fattening periods. Journal of Applied Animal Research, 34(2), 157-161.
56. Newkirk, R., Classen, H., & Edney, M. (2003). Effects of prepress-solvent extraction on the nutritional value of canola meal for broiler chickens. Animal Feed Science and Technology, 104(1-4), 111-119.
57. Nouri-Emamzadeh, A., Yaghobfar, A., Sadeghi, A., Mirhadi, S., & Chamani, M. (2008). Determination of Metabolizable Energy in Soybean, Sunflower and Canola Meals Using Caecectomised and Intact Adult Cockerels. JOURNAL OF ANIMAL AND VETERINARY ADVANCES, 7(3), 235-238.
58. Olukosi, O., Kasprzak, M., Kightley, S., Carre, P., Wiseman, J., & Houdijk, J. (2017). Investigations of the nutritive value of meals of double-low rapeseed and its influence on growth performance of broiler chickens. Poultry Science, 96(9), 3338-3350.
59. Rogiewicz, A., & Slominski, B. (2019). Low-glucosinolate rapeseed meal as a valuable source of protein for poultry. Proc. 22nd. Eur. Sympo. Poult. Nutr. Gdansk, Poland, 15-24.
60. Sibbald, I. (1980). Metabolizable energy in poultry nutrition. BioScience, 30(11), 736-741.
61. Sibbald, I. (1982). Measurement of bioavailable energy in poultry feedingstuffs: a review. Canadian Journal of Animal Science, 62(4), 983-1048.
62. Slominski, B. A., & Campbell, L. D. (1990). Non‐starch polysaccharides of canola meal: quantification, digestibility in poultry and potential benefit of dietary enzyme supplementation. Journal of the Science of Food and Agriculture, 53(2), 175-184.
63. Smits, C. H., & Annison, G. (1996). Non-starch plant polysaccharides in broiler nutrition–towards a physiologically valid approach to their determination. World's poultry science journal, 52(2), 203-221.
64. Veluri, S., & Olukosi, O. A. (2020). Metabolizable energy of soybean meal and canola meal as influenced by the reference diet used and assay method. Animals, 10(11), 2132.
65. Watts, E. S., Rose, S. P., Mackenzie, A. M., & Pirgozliev, V. R. (2020). The effects of supercritical carbon dioxide extraction and cold-pressed hexane extraction on the chemical composition and feeding value of rapeseed meal for broiler chickens. Archives of animal nutrition, 74(1), 57-71.
66. Wise, T., & Adeola, O. (2023). Validation of a 3-point model for the determination of energy values using the regression method in broiler chickens. Poultry Science, 102(2), 102336.
67. Zhong, R., & Adeola, O. (2019). Energy values of solvent-extracted canola meal and expeller-derived canola meal for broiler chickens and growing pigs determined using the regression method. Journal of Animal Science, 97(8), 3415-3425.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb