1. Andrews, S. 2010. FastQC: a quality control tool for high throughput sequence data.
2. Asgari Esfedan, B., G.R. Dashab, M.H. Banabazi and M. Rokouei. 2022. The effect of crossbreeding by the Montbeliard cattle on the transcriptome of the Sistani cattle. Research on Animal Production (Scientific and Research), 12(31): 134-145. [
DOI:10.21203/rs.3.rs-1253311/v1]
3. Attari, M., H. Moradi Shahrbabak, G. Nehzati Paghale, M. H. Banabazi and M. Hashemi. 2019. Study of differential gene expression in queen, drone and worker honey bee using RNA-seq data. Iranian Journal of Animal Science, 50(2): 103-113.
4. Bahrami, A. 2020. Which aligner software is the best for our study. Journal of Genetics and Genome Research, 7, 048. [
DOI:10.23937/2378-3648/1410048]
5. Bainbridge, M.N., R.L. Warren, M. Hirst, T. Romanuik, T. Zeng, A. Go and V. Magrini. 2006. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics, 7(1): 1-11. [
DOI:10.1186/1471-2164-7-246]
6. Blankenberg, D., A. Gordon, G. Von Kuster, N. Coraor, J. Taylor, A. Nekrutenko and G. Team. 2010. Manipulation of FASTQ data with Galaxy. Bioinformatics, 26(14): 1783-1785. [
DOI:10.1093/bioinformatics/btq281]
7. Bolger, A.M., M. Lohse and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15): 2114-2120. [
DOI:10.1093/bioinformatics/btu170]
8. Boschiero, C., Y. Gao, R. L. Baldwin, L. Ma, C. J. Li and G. E. Liu. 2022. Differentially CTCF-binding sites in cattle rumen tissue during weaning. International Journal of Molecular Sciences, 23(16): 9070. [
DOI:10.3390/ijms23169070]
9. Cheng, H., S. Ao, L. Yun, S. Weihong, L. Hong, L. Jianbo Y. and Kangle. 2022. RNA-Seq transcriptome analysis to unravel the gene expression profile of ovarian development in Xiangxi cattle. Pakistan Veterinary Journal, 42(2): 222-228.
10. Conesa, A., P. Madrigal, S. Tarazona, D. Gomez-Cabrero, A. Cervera, A. McPherson and X. Zhang. 2016. A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1): 1-19. [
DOI:10.1186/s13059-016-0881-8]
11. Covert, M. W., C. H. Schilling, I. Famili, J. S. Edwards, I. I. Goryanin, E. Selkov B. O. and Palsson. 2001. Metabolic modeling of microbial strains in silico. Trends in Biochemical Sciences, 26(3): 179-186. [
DOI:10.1016/S0968-0004(00)01754-0]
12. Dar, M.A., S.M. Ahmad, B.A. Bhat, T.A. Dar, Z. Haq, B.A. Wani and N.A. Ganai. 2022. Comparative RNA-Seq analysis reveals insights in Salmonella disease resistance of chicken; and database development as resource for gene expression in poultry. Genomics, 114(5): 110475. [
DOI:10.1016/j.ygeno.2022.110475]
13. Dobin, A., C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha and T. R. Gingeras. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1): 15-21. [
DOI:10.1093/bioinformatics/bts635]
14. Duan, X., Y. Liu, X. Zhang and H. Zhao. 2022. Transcriptional features of cattle visceral and subcutaneous adipose tissues: a study of RNA-seq. Open Journal of Animal Sciences, 12(3): 441-453. [
DOI:10.4236/ojas.2022.123033]
15. Gholami Tahoone, M. and H. Moradi SharBabak. 2022. Differential genes expression of blood tissue related to pre-calving ketosis in holstein cow using transcriptomics data. Research on Animal Production (Scientific and Research), 13(36): 147-153 (In Persian). [
DOI:10.52547/rap.13.36.147]
16. Jiminez, J., E. Timsit, K. Orsel, F. Van der Meer, L.L. Guan and G. Plastow. 2021. Whole-blood transcriptome analysis of feedlot cattle with and without bovine respiratory disease. Frontiers in Genetics, 12: 627623. [
DOI:10.3389/fgene.2021.627623]
17. Kim, D., B. Langmead and S.L. Salzberg. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods, 12(4): 357-360. [
DOI:10.1038/nmeth.3317]
18. Kim, D., G. Pertea, C. Trapnell, H. Pimentel, R. Kelley and S. L. Salzberg. 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4): 1-13. [
DOI:10.1186/gb-2013-14-4-r36]
19. Langmead, B. and S.L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4): 357. [
DOI:10.1038/nmeth.1923]
20. Langmead, B., C. Trapnell, M. Pop and S.L. Salzberg. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3): 1-10. [
DOI:10.1186/gb-2009-10-3-r25]
21. Li, H., J. Huang, J. Zhang, Y. Gao, B. Han and D. Sun. 2022. Identification of alternative splicing events associated with paratuberculosis in dairy cattle using multi-tissue RNA sequencing data. Genes, 13(3): 497. [
DOI:10.3390/genes13030497]
22. McGettigan, P., J. Browne, S. Carrington, M. Crowe, T. Fair, N. Forde and K. Pluta. 2016. Fertility and genomics: comparison of gene expression in contrasting reproductive tissues of female cattle. Reproduction, Fertility and Development, 28(2): 11-24. [
DOI:10.1071/RD15354]
23. Merchant, S., D.E. Wood and S.L. Salzberg. 2014. Unexpected cross-species contamination in genome sequencing projects. Peer Journal, 2: e675. [
DOI:10.7717/peerj.675]
24. Mesquita, F., R. Ramos, G. Pugliesi, S. Andrade, V. Van Hoeck, A. Langbeen and H. Fukumasu. (2016). Endometrial transcriptional profiling of a bovine fertility model by next-generation sequencing. Genomics Data, 7: 26-28. [
DOI:10.1016/j.gdata.2015.11.008]
25. Nie, H., Y. Zhang, S. Duan, Y. Zhang, Y. Xu, J. Zhan and X. Wu. 2022. RNA-Sequencing Analysis of Gene-Expression profiles in the dorsal gland of alligator sinensis at different time points of embryonic and neonatal development. Life, 12(11): 1787. [
DOI:10.3390/life12111787]
26. Pertea, M., G.M. Pertea, C. M. Antonescu, T.C. Chang, J.T. Mendell and S.L. Salzberg. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 33(3): 290-295. [
DOI:10.1038/nbt.3122]
27. Preuss, T.M., M. Caceres, M.C. Oldham and D.H. Geschwind. 2004. Human brain evolution: insights from microarrays. Nature Reviews Genetics, 5(11): 850. [
DOI:10.1038/nrg1469]
28. Raplee, I. D., A.V. Evsikov and C. Marín de Evsikova. 2019. Aligning the Aligners: Comparison of RNA sequencing data alignment and gene expression quantification tools for clinical breast cancer research. Journal of Personalized Medicine, 9(2): 18. [
DOI:10.3390/jpm9020018]
29. Trapnell, C., B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. Van Baren and L. Pachter. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28(5): 511-515. [
DOI:10.1038/nbt.1621]
30. Verma, P. and M. Shakya. 2021. Transcriptomics and sequencing analysis of gene expression profiling for major depressive disorder. Indian Journal of Psychiatry, 63(6): 549. [
DOI:10.4103/psychiatry.IndianJPsychiatry_858_20]
31. Wang, J., J. Z. Di Fang, F. Huang, B. Liu, W. Tao, B. Cui and Q. Gao. 2022. Transcriptome analysis of cattle embryos based on single cell RNA-Seq. Pakistan Journal of Zoology, 1-8. [
DOI:10.17582/journal.pjz/20211016091046]
32. Yang, I.S. and S. Kim. 2015. Analysis of whole transcriptome sequencing data: workflow and software. Genomics and Informatics, 13(4): 119. [
DOI:10.5808/GI.2015.13.4.119]