دوره 14، شماره 42 - ( زمستان 1402 )                   جلد 14 شماره 42 صفحات 101-88 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

kazemian H, Hasani S, Samadi F, Mohammadi A. (2023). Investigating the genetic and phenotypic relationship between biometric traits, body weights and carcass traits measured by ultrasound in Kurdi sheep of North Khorasan. rap. 14(42), 88-101.
URL: http://rap.sanru.ac.ir/article-1-1318-fa.html
کاظمیان حمید، حسنی سعید، صمدی فیروز، محمدی عقیل. بررسی ارتباط ژنتیکی و فنوتیپی بین صفات بیومتری، اوزان بدن و صفات لاشه اندازه ‎گیری شده با اولتراسوند در گوسفند نژاد کردی شمال خراسان پژوهشهاي توليدات دامي 1402; 14 (42) :101-88

URL: http://rap.sanru.ac.ir/article-1-1318-fa.html


ژنتیک و اصلاح دام و طیور، دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده:   (322 مشاهده)
چکیده مبسوط
مقدمه و هدف: سوددهی گوسفند از نظر تولید گوشت تا حد زیادی به صفات رشد و ویژگی‌های لاشه بستگی دارد. با وجود اهمیت کیفیت گوشت گوسفند پژوهش‌های اندکی در این زمینه در گوسفندان بومی کشور صورت گرفته است. بنابراین، اهمیت بررسی صفات لاشه حیوانات بهخصوص زمانیکه هنوز زنده‌اند ضروری بهنظر میرسد. هدف پژوهش حاضر تعیین و بررسی ارتباط ژنتیکی و فنوتیپی بین صفات بیومتری، اوزان بدن و صفات لاشه اندازهگیری شده با اولتراسوند در گوسفند کردی شمال خراسان بود. از آنجائیکه اندازه‌گیری صفات لاشه سخت و پرهزینه است و بهمنظور طراحی بهتر برنامه‌‌های اصلاحی جهت بهبود صفات لاشه، در صورت وجود ارتباط قوی ژنتیکی امکان جایگزینی صفاتی که اندازه‌گیری آنها ساده‌تر است با صفات لاشه که بهسختی اندازه‌گیری می‌شوند فراهم میشود.
مواد و روش‌ها: داده‌‌های 658 رأس گوسفند نژاد کردی در ایستگاه پرورش و اصلاح نژاد گوسفند کردی شیروان واقع در استان خراسان شمالی در گستره شمالی شرق ایران میان 57 درجه طول شرقی و 37/4 درجه عرض شمالی در فصول بهار، تابستان و پائیز سال 1400 مورد استفاده واقع شد. اطّلاعات مربوط به شجره و اوزان تولّد (658 رکورد)، سه ماهگی (652 رکورد)، شش ماهگی (638 رکورد) و نه ماهگی (419 رکورد) از رکوردهای ثبت شده در ایستگاه مزبور استخراج شد. برای بررسی اثرات ثابت بر روی صفات از رویه‌ی مدل‌های خطّی عمومی (GLM) نرم‌افزار SAS استفاده شد. برای برآورد پارامترها و ارتباط ژنتیکی بین صفات مزبور از روش حداکثر درست‌نمایی محدودشده (REML) براساس مدل حیوانی یک و دو صفتی در نرم‌افزار WOMBAT استفاده شد. برای دستیابی به معادله پیشبینی صفات لاشه بر اساس دیگر صفات مورد پژوهش، از رگرسیون چند متغیره استفاده شد.
یافته‌ها: وراثت ‌پذیری ضخامت چربی زیرجلدی، مساحت، عرض و عمق ماهیچه‌ی چشمی اولتراسوندی به­ترتیب 0/06±0/01، 0/06±0/06، 0/03±0/10 و 0/03±0/08 برآورد شد. همبستگی ژنتیکی مثبت بالایی میان ضخامت چربی زیرپوستی و مساحت ماهیچه چشمی مشاهده شد (0/31±0/71). صفات لاشه اولتراسوندی همبستگی ژنتیکی مثبت بالایی با صفات دنبه داشتند. همبستگی ژنتیکی مثبت بالایی بین صفات لاشه‌ی اولتراسوندی و ارتفاع جدوگاه، ارتفاع ناحیه‌ی کپل، محیط دور سینه، محیط دور شکم، طول مورّب بدن، محیط ران و عمق کپل بهدست آمد. مدل مربوط به مساحت ماهیچه چشمی با بالاترین میزان ضریب تعیین (0/82) از دیگر مدل‌ها برای پیشبینی قابل اطمینان‌تر است.
نتیجه‌گیری: وراثت‌پذیری پایین صفات اندازه‌گیری شده با فنّ‌آوری اولتراسوند در گوسفندان کردی ایستگاه اصلاح نژاد گوسفند کردی شیروان نشان می­ دهد که امکان بهبود این صفات از طریق انتخاب انفرادی چندان مؤثّر نیست و باید از دیگر روش‌های انتخاب (انتخاب فامیلی و یا انتخاب بهکمک نشانگر) برای بهبود این صفات استفاده شود. بهطور کلی، با توجه به ضریب تعیین نسبتاً مناسب، از مدل‌های رگرسیونی می‌توان برای پیشبینی صفات لاشه در گله ایستگاه گوسفند کردی شیروان استفاده نمود.

متن کامل [PDF 3959 kb]   (46 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک و اصلاح نژاد دام
دریافت: 1401/5/23 | ویرایش نهایی: 1402/10/27 | پذیرش: 1402/5/28 | انتشار: 1402/10/26

فهرست منابع
1. Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on automatic control, 19(6), 716-723. [DOI:10.1109/TAC.1974.1100705]
2. Arnold, J. W., Bertrand, J. K., Benyshek, L. L., & Ludwig, C. (1991). Estimates of genetic parameters for live animal ultrasound, actual carcass data, and growth traits in beef cattle. Journal of animal science, 69(3), 985-992. [DOI:10.2527/1991.693985x]
3. Brash, L. D., Fogarty, N. M., Gilmour, A. R., & Luff, A. F. (1992). Genetic parameters for liveweight and ultrasonic fat depth in Australian meat and dual-purpose sheep breeds. Australian journal of agricultural research, 43(4), 831-841. [DOI:10.1071/AR9920831]
4. Brown, D. J., Ball, A. J., Huisman, A. E., Swan, A. A., Atkins, K. D., Graser, H. U., Banks, R. G. Swan, P., & Woolaston, R. R. (2006). Sheep genetics Australia. Pp. 3-5 in Proc. 8th World Congr. Genet. Appl. Livest. Prod., Belo Horizonte, Brazil.
5. Deljo Issa Lu, H. (2014). Relationship between growth traits and biometric traits in Balochi sheep. Research On Animal Production. 6 (12): 165-160 (In Persian).
6. Esen, F., & Yildiz, N. (2000). Production characteristics of Akkaraman, Sakız _ Akkaraman (F1) crossbred lambs. II. Fattening performance, slaughter and carcass characteristics. Turk Journal of Veterinary Animal Science, 24: 215-222.
7. Falconer, D. S. & Mackay, T. F. C. (1996). Introduction to quantitative genetics. 4th. London, Longman. 465pp.
8. Fernandez C., Gallego, L., & Quintanilla, A. (1997). Lamb fat thickness and longissimus muscle area measured by a comput-erized ultrasounic system. Small Rumin. Res. 26, 277-282. [DOI:10.1016/S0921-4488(97)00007-2]
9. Fernandes, T. L., Wilton, J. W., & Tosh, J. J. (2004). Estimates of genetic parameters for ultrasound-measured carcass traits in sheep. Canadian journal of animal science, 84(3), 361-365. doi:10.4141/A03-080 [DOI:10.4141/A03-080]
10. Fogarty, N. M., Brash, L. D., & Gilmour, A. R. (1994). Genetic parameters for reproduction and lamb production and their components and liveweight, fat depth and wool production in Hyfer sheep. Australian Journal of Agricultural Research, 45(2), 443-457. [DOI:10.1071/AR9940443]
11. Fogarty, N. M. (1995). Genetic parameters for live weight, fat and muscle measurements, wool production and reproduction in sheep: a review. In Animal Breeding Abstracts, 63, 101-143.
12. Fogarty, N. M., Safari, E., Taylor, P. J., & Murray, W. (2003). Genetic parameters for meat quality and carcass traits and their correlation with wool traits in Australian Merino sheep. Australian Journal of Agricultural Research, 54(7), 715-722. [DOI:10.1071/AR03047]
13. Ghafuri, F., Alexander descent, M. P., & Muhammad, H. (2008). Compare different animal models to estimate variance components and genetic parameters of body weight Makuyi sheep. Science and Technology of Agriculture and Natural Resources. 47: 155-165 (In Persian).
14. Gilmour, A. R., Luff, A. F., Fogarty, N. M., & Banks, R. (1994). Genetic parameters for ultrasound fat depth and eye muscle measurements in live Poll Dorset sheep. Australian Journal of Agricultural Research, 45(6), 1281-1291. [DOI:10.1071/AR9941281]
15. Hosseini Vardanjani S. M., Miraei Ashtiani, S. R., Pakdel, A. & Moradi Shahrebabak, H. (2014). Accuracy of real-time ultra-sonography in assessing carcass traits in Torki-Ghashghaii sheep. J. Agric. Sci. Technol. 16: 791-800 (In Persian).
16. Janssens, S., & Vandepitte, W. (2004). Genetic parameters for body measurements and linear type traits in Belgian Blue du Maine, Suffolk and Texel sheep. Small Ruminant Research, 54, 13-24. [DOI:10.1016/j.smallrumres.2003.10.008]
17. Junkuszew A., & Ringdorfer, F. (2005). Computer tomography and ultrasound measurement as methods for the prediction of the body composition of lambs. Small Rumin. Res. 56(1), 121-125. [DOI:10.1016/j.smallrumres.2004.03.008]
18. Kiani Manesh, H., Nejati Javarami, A., & Kamali, V. (2018). Estimation of genetic and environmental parameters of important economic traits in Fars native chickens. Research and construction, 14(4 (result 53) in livestock and aquatic affairs), 6-9. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=47993.
19. Kianzad, M. R. (2005). Comparison of carcass composition of Iranian fat-tailed sheep. Asian-Australian J. Anim. Sci. 18(9): 1348-1352. [DOI:10.5713/ajas.2005.1348]
20. Kianzad, M. R. (2013). Estimation of physical and chemical composition of Maghani and Makoi sheep carcasses in breeding flocks (body sizes and carcass characteristics), Journal of research and production in livestock and aquatic affairs, 64: 2-11 (In Persian).
21. Khaldari, M. (2006). Principles of sheep and goat, The 3th print, Jehad University, Tehran, 560pp (In Persian).
22. Larsgard, A. G., & Kolstad, K. (2003). Selection for ultrasonic muscle depth; direct and correlated response in a Norwegian experimental sheep flock. Small Ruminant Research, 48(1), 23-29. [DOI:10.1016/S0921-4488(02)00291-2]
23. Larsgard, A. G., & Olesen, I. (1998). Genetic parameters for direct and maternal effects on weights and ultrasonic muscle and fat depth of lambs. Livestock production science, 55(3), 273-278. [DOI:10.1016/S0301-6226(98)00134-1]
24. Macfarlane, J. M., Lewis, R. M., Emmans, G. C., Young, M. J., & Simm, G. (2006). Predicting carcass composition of terminal sire sheep using X-ray computed tomography. Animal Science. 82, 289-300. [DOI:10.1079/ASC200647]
25. Maniatis, N., & Pollott, G. E. (2002). Maternal effects on weight and ultrasonically measured traits of lambs in a small closed Suffolk flock. Small Ruminant Research, 45(3), 235-246. [DOI:10.1016/S0921-4488(02)00114-1]
26. Matos, C. A. P., Thomas, D. L., Nash, T. C., Waldron, D. F., & Stookey, J.M. (1992). Genetic analyses of scrotal circumference, size and growth in Rambouillet lambs. Journal of Animal Science, 70: 43-50. [DOI:10.2527/1992.70143x]
27. Maxa, J., Norberg, E., Berg, P., & Milerski, M. (2007a). Genetic parameters for body weight, longissimus muscle depth and fat depth for Suffolk sheep in the Czech Republic. Small Rumin. Res. 72, 87-91. [DOI:10.1016/j.smallrumres.2006.04.018]
28. Maxa, J., Norberg, E., Berg, P., & Pedersen, J. (2007b). Genetic parameters for carcass traits and in vivo measured muscle and fat depth in Danish Texel and Shropshire. Acta Agric. Scandi-navica. Sect. A. Anim. Sci. 57(2): 49-54. [DOI:10.1080/09064700701440439]
29. Mehman Nawaz, Y., Vaez Tarshizi, R., Salehi, A., & Shourideh, A. (2010). Inbreeding and its effect on production traits in Balochi sheep, the first seminar on genetics and breeding of domestic livestock, poultry and aquatic animals, Faculty of Agriculture, University of Tehran, 263-268 (In Persian).
30. Meyer, K. (2007). WOMBAT - A tool for mixed model analyses in quantitative genetics by REML, Journal of Zhejiang University SCIENCE B, 8: 815-821. [doi:10.1631/jzus. B0815]. [DOI:10.1631/jzus.2007.B0815]
31. Milerski, M., & Jandasek, V. (2002). The application of the ultrasonography in the sheep breeding in the Csech Republic. In 7th world congress on genetic applied to livestock production, August 19-23; 2002, Montpellier, Franc, Session 02. Breeding ruminance for meat production Abstract of No. 02-51.
32. Mohammadi, A., Hassani, S., Zerehdaran, S., Bagheri, M., & Mirshahi, A. (2018). Genetic evaluation of some carcass characteristics assessed by in vivo real time ultrasonography in Baluchi sheep. Iranian Journal of Applied Animal Science, 8(3): 457-468 (In Persian).
33. Moeller, S. J., & Christian, L. L. (1998). Evaluation of the accuracy of real-time ultrasonic measurement of backfat and loin muscle area in swine using multiple statistical analysis procedure. J. Anim Sci. 76: 2503-2514. [DOI:10.2527/1998.76102503x]
34. Naserkheil, M.; Lee, D. H., Kong, H. S., Seong, J., & Mehrban, H. (2021). Estimation of Genetic Parameters and Correlation between Yearling Ultrasound Measurements and Carcass Traits in Hanwoo Cattle. Animals. 11: 1425. [DOI:10.3390/ani11051425]
35. Orman A., Caliskan, G. U., & Dikmen, S. (2010). The assessment of carcass traits of Awassi lambs by real-time ultrasound at different live weights and different sex. J. Anim. Sci. 88: 3428-3438. [DOI:10.2527/jas.2009-2431]
36. Pinheiro, R. S. B.; Jorge, A. M., Pariz, C. M., & Yokoo, M. J. I. (2014). Medidas repetidas no tempo realizadas por ultrassom em ovelhas de descarte em diferentes estágios fisiológicos. Semina: Ciências Agrárias, Londrina, Suplemento. v. 35(4): 2739-2748. [DOI:10.5433/1679-0359.2014v35n4Suplp2739]
37. Sadeghi, D.A., Khadivi, H., Navidzadeh, M., & Nikbakhti, M. (2007). Study on influence of environmental effect on birth weight, weaning weight and daily growth of Baluchi sheep. Pakistan Journal of Nutrition. 6:436-437. [DOI:10.3923/pjn.2007.436.437]
38. Saedi, A., Hassani, S., Shadkam, F., Pishkar, J., & Karimi Birgani, H. (2021). An investigation on the effects of environmental factors on biometric traits in the head and neck of thoroughbred horses in Golestan province. Research On Animal Production. 12 (34) :148-155. [DOI:10.52547/rap.12.34.148]
39. Safari, M. (1371). The report on the identification of Makoyi ecotype sheep, the Department of Animal Husbandry of Jihad, West Azarbayjan province (In Persian).
40. Sahin, E. H., Yardimci, M., Cetingul, I. S., Bayram, I., & Sengor, E. (2008). The use of ultrasound to predict the carcass composition of live Akkaraman lambs. Meat science. 79: 716-721. [DOI:10.1016/j.meatsci.2007.11.003]
41. Saghi, D.A. & Shahdadi, A. (2016). Estimation of genetic parameters of size ratios and growth traits in Kurdish sheep, Iranian Journal of Animal Science Research. 8(2): 370-381.
42. Sargolzaei, M., Iwaisaki, H., & Colleau, J.J. (2006). CFC: A tool for monitoring genetic diversity. Proc. 8th World Congr. Genet. Appl. Livest. Prod., CD-ROM Communication 27-28. Belo Horizonte, Brazil, Aug.13-18 (In Persian).
43. SAS Institute. (2003). SAS®/STAT Software, Release 8. SAS Institute, Inc., Cary, NC. USA.
44. Silva, S. R., Afonso, J. J., Santos, V. A., Monteiro, A., Guedes, C. M., Azevedo, J. M. T. D., & Dias-da-Silva, A. (2006). In vivo estimation of sheep carcass composition using real-time ultrasound with two probes of 5 and 7.5 MHz and image analysis. Journal of animal science, 84(12), 3433-3439. [DOI:10.2527/jas.2006-154]
45. Silva Sena, L.; Vieira dos Santos, G., Saraiva Torres, T., de Sousa Júnior, A., de Araujo Rego Neto, A., Lindenberg Rocha Sarmento, J., & Biagiotti, D. (2016). Genetic parameters for carcass traits and body size of meat sheep. Semina: Ciências Agrárias. 37(4): 2477-2485. [DOI:10.5433/1679-0359.2016v37n4Supl1p2477]
46. Simm, G. (1992). Selection for lean meat production. In progress in sheep and goat research, Edited by Speedy. A.W. Printed in the U.K.
47. Taheri yeganeh A., Sanjabi, M. R., Fayazi, J., Zandi, M., & Van Der Werf, J. (2022). Estimation of variance components and genome partitioning according to minor allele frequency for quantitative traits in sheep. Research On Animal Production. 13(35) :139-148. [DOI:10.52547/rap.13.35.139]
48. Tavakolian, J. (1999). The genetic resources of native farm animals of Iran. Animal Science Research Institute of Iran. (In Persian).
49. Tufan, M., & Akmaz, A. (2001). Slaughter and carcass traits of Guney Karaman, Kangal-Akkaraman lambs at different slaughter weights. Turk Journal of Veterinary Animal Science, 25(4): 495-510.
50. Turner, J. W., Lorna, S., Pelton, S., & Cross, H. R. (1990). Using live animal ultrasound measures of ribeye areas and fat thickness in yearling Hereford bulls. J. Anim. Sci. 68: 3502-3506. [DOI:10.2527/1990.68113502x]
51. Wood, J. D., & Fisher, A.V. (1990). Reducing Fat in Meat Animals. Elsevier Science Publisher.
52. Zamiri, M. J., & Izadifard, J. (1997). Relationship of fat-tail weight with fat-tail measurements and carcass characteristics of Mehraban and Ghezel rams. Small Ruminant Research. 26: 261-266. [DOI:10.1016/S0921-4488(97)00013-8]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb