دوره 13، شماره 37 - ( پاییز 1401 1401 )                   جلد 13 شماره 37 صفحات 174-166 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khojastekey M, Saghi D A, Saghi R. Comparison of Artificial Neural Network Training Algorithms for Predicting the Weight of Kurdi Sheep using Image Processing. rap 2022; 13 (37) :166-174
URL: http://rap.sanru.ac.ir/article-1-1271-fa.html
خجسته کی مهدی، ساقی داودعلی، ساقی راضیه. مقایسه آلگوریتم های آموزشی شبکه عصبی مصنوعی در برآورد وزن گوسفندان کردی با استفاده از خصوصیات تصاویر دیجیتال. پژوهشهاي توليدات دامي 1401; 13 (37) :174-166

URL: http://rap.sanru.ac.ir/article-1-1271-fa.html


تحقیقات آموزش و ترویج کشاورزی
چکیده:   (238 مشاهده)
چکیده مبسوط
مقدمه و هدف: انسان به­جهت خستگی، وقوع خطاهای ناخواسته، تاثیر­پذیری از محیط و آسیب­پذیری از رخدادهای طبیعی همواره در تشخیص­ های خود از محیط اطراف و یا موضوعات مختلف دچار اشتباهاتی می ­شود بطوری­ که برداشت افراد مختلف از یک واقعه واحد و منحصر بفرد ممکن است بسیار متفاوت و متنوع باشد.  امروزه انسان با توسعه فناوری پردازش تصویر سعی دارد با استفاده از امکانات سخت­ افزاری و نرم ­افزاری و با کمک گرفتن از ویژگی­ های استخراج شده از تصاویر مربوط به اشیاء، گیاهان و حیوانات سرعت و دقت ارزیابی و تشخیص خود را در مورد پدیده­ های اطراف خود افزایش دهد و به این جهت فناوری جدیدی با عنوان پردازش تصویر را ایجاد نموده و آن را در ابعاد مختلف توسعه بخشیده است.

مواد و روش ­ها: با هدف شناسایی بهترین آلگوریتم آموزش شبکه عصبی مصنوعی جهت تخمین وزن گوسفندان کردی با استفاده از پردازش تصاویر دیجیتال، تعداد بره ­ها و دام ­های بالغ در سنین مختلف موجود در ایستگاه اصلاح­ نژاد گوسفند استان خراسان شمالی، با استفاده از باسکول وزن­ کشی شدند. در هنگام وزن­کشی، تصاویری از نمای جانبی دام­ ها با استفاده از دوربین دیجیتال و با رعایت فاصله ثابت تهیه و ثبت شد. با استفاده از رابط گرافیکی GUI نرم ­افزار متلب (نسخه R2010a) مراحل پردازش تصویر و استخراج خصوصیات عددی از تصاویر دام ­ها انجام شد. سپس سه نوع شبکه عصبی مصنوعی با استفاده از سه نوع آلگوریتم آموزشی مختلف شامل لونبرگ مارکوات، اسکیلد کانژوگیت گرادینت و آموزش بیزی آموزش داده شد. خصوصیات تصاویر به­ عنوان ورودی و وزن دام­ ها به ­عنوان خروجی در آموزش شبکه ­های مختلف مورد استفاده قرار گرفت و در نهایت دقت مدل­ ها در تخمین وزن مقایسه گردید.
یافته ­ها: بر اساس نتایج، دقت شبکه­ های عصبی آموزش دیده با سه آلگوریتم  مورد بررسی شامل اسکیلد کانژوگیت گرادینت، بیزی و لونبرگ مارکوات در تخمین وزن در مرحله آموزش به­ترتیب 91/95، 94/74 و 94/34 درصد برآورد شد. در آزمون عملی که با ارائه 20 تصویر به­عنوان تست به هر یک از مدل­ها انجام شد، شبکه آموزش دیده با آلگوریتم اسکیلد کانژوگیت گرادینت با خطای 4/7 درصد، شبکه بیزین با خطای 0/5 درصد و شبکه لونبرگ مارکوات با خطای 2/11 درصد وزن را از روی تصاویر دیجیتال آن­ها تخمین زدند. هر سه نوع آلگوریتم  از دقت کافی برای تخمین وزن برخوردار بوده و در این بین دقت شبکه عصبی مصنوعی آموزش دیده با آلگوریتم بیزی بیش از دو مدل دیگر بود.
نتیجه­ گیری: عملکرد روش پیشنهادی بر مبنای پردازش تصویر و استفاده از شبکه عصبی مصنوعی از دقت کافی برای تخمین وزن گوسفندان کردی برخوردار بوده و در این بین مدل طراحی شده بر مبنای آلگوریتم آموزش بیزی نسبت به دو آلگوریتم آموزشی لونبرگ مارکوات و اسکیلد کانژوگیت گرادینت از کارایی بهتری برخوردار بود. بر اساس نتایج مطالعه حاضر توسعه اپلیکیشن هایی بر مبنای استفاده از هوش مصنوعی برای توزین دام ­های اهلی کاملا امکان پذیر بوده و استفاده از آنها در مواقع متعددی که امکان دسترسی سریع و آسان به ترازو وجود ندارد، پیشنهاد می­ شود.


 
متن کامل [PDF 1164 kb]   (91 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک و اصلاح نژاد دام
دریافت: 1400/10/11 | ویرایش نهایی: 1401/8/28 | پذیرش: 1401/4/25 | انتشار: 1401/8/28

فهرست منابع
1. Akkol, S., A. Akilli and I. Cemal. 2017. Comparison of artificial neural network and multiple linear regression for prediction of live weight in hair goats. YYU Journal of Agricultural Science, 27(1): 21-29.
2. Alvarez, J.R., M. Arroqui, P. Manqude and J. Toloz. 2017. Advances in automatic detection of body condition score of cows. A. mini review. Journal of Dairy, Veterinary and animal Research, 5(4): 00149. [DOI:10.15406/jdvar.2017.05.00149]
3. Anglart, D. 2010. Automatic estimation of body weight and body condition score in dairy cows using 3d imaging technique, Master thesis.
4. Avazpour, S., B. Bakhtiari and K. Qaderi. 1398. Performance evaluation of neural network and multivariate regression methods for estimation of total solar radiation at several stations in arid and semi-arid climates. Iranian Journal of Soil and Water Research, 50(8): 1855-1869 (In Persian).
5. Dongrec, V.B., R.S. Gandhia, A. Singh and A.P. Ruhil. 2012. Comparative efficiency of artificial neural networks and multiple linear regression analysis for prediction of first lactation 305-day milk yield in Sahiwal cattle. Livestock Science, 192-197. [DOI:10.1016/j.livsci.2012.04.002]
6. Felipe, V.P.S., M.A. Silva, B.D. Valente and G.J.M. Rosa. 2015. Using multiple regression, Bayesian networks and artificial neural networks for prediction of total egg production in European quails based on earlier expressed phenotypes. Poultry Science, 94: 772-780. [DOI:10.3382/ps/pev031]
7. Forbes, K. 2000. Volume Estimation of Fruit from Digital Profile Images. A dissertation submitted to the Department of Electrical Engineering, University of Cape Town, in fulfilment of the requirements for the degree of Master of Science in Engineering.
8. Gianola, D., H. Okut, K.A. Weigel and G.J.M. Rosa. 2011. Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genetics, 2011, 12:87-101. [DOI:10.1186/1471-2156-12-87]
9. Grzesiak, W., R. Lacroix, J. Wójcik and P. Blaszczyk. 2003. A comparison of neural network and multiple regression predictions for 305-day lactation yield using partial lactation records. Canadian Journal of Animal Science, 83: 307-310. [DOI:10.4141/A02-002]
10. Hassan, K.J., S. Samarasinghe and M.G. Lopez- Benavidest. 2009. Use of neural networks to detect minor and major pathogens that cause bovine mastitis. Journal of Dairy Science, 92: 1493-1499. [DOI:10.3168/jds.2008-1539]
11. Hao, M., H. Yu and D. Li. 2016. The measurement of fish size by machine vision, -A review. IFIP International Federation for Information Processing. IFIP AICT 479(15-32), DOI: 10.1007/978-3-319-48354-2-2. [DOI:10.1007/978-3-319-48354-2_2]
12. Khojastehkey, M., A.A. Aslaminejad, M.M. Shariati and R. Dianat. 2015. Body size estimation of new born lambs using image processing and its effect on the genetic gain of a simulated population. Journal of Applied Animal Research, DOI: 10.1080/09712119.2015.1031789. [DOI:10.1080/09712119.2015.1031789]
13. Khojastehkey, M., M.A. Abbasi, A. Akbari Sharif and A.M. Hassani. 1395. Weight estimation of Zandi lambs using image processing and artificial neural network. Animal Science Journal (Pajouhesh & Sazandegi), 112: 99-104 (In Persian).
14. Krenker, A., J. Bešter and A. Kos. 2011. Introduction to the Artificial Neural Networks, Artificial Neural Networks - Methodological Advances and Biomedical Applications, Prof. Kenji Suzuki (Ed.), ISBN: 978- 953-307-243-2, InTech, Available from: http://www.intechopen.com/books/artificial-neural-networksmethodological-advances-and biomedical-applications/introduction-to-the-artificial-neural-networks. [DOI:10.5772/15751]
15. Krieter, J., E. Stamer and W. Junge. 2006. Control charts and neural networks for oestrus detection in dairy cows. Lecture Notes in Informatics, Land- und Ernährungswirtschaft im Wandel-Aufgaben und Herausforderungen für die Agrar und Umweltinformatik, Referate der 26, GIL Jahrestagung, 6-8 March 2006, Potsdam, pp: 133-136.
16. Li, Z., C.H. Luo, G. Teng and T. Lin. 2015. Estimation of pig weight by machine vision. A review. 7th international conference on computer and computing technology in agriculture. Beijing. China, 42-49. [DOI:10.1007/978-3-642-54341-8_5]
17. Menhaj, M.B. 2011. Computational Intelligence (Vol. I) Basics of neural networks. First Edition. Amir Kabir University of Technology Publishing Center (In Persian).
18. Negretti, P., G. Bianconi, S. Bartocci and S. Terramoccia. 2007. Lateral Trunk Surface as a new parameter to estimate live body weight by visual image analysis. Italian Journal of Animal Science, 6: 1223-1225. [DOI:10.4081/ijas.2007.s2.1223]
19. Okut, H., X.L. Wu, G.J.M. Rosa, S. Bauck, B.W. Woodward, R.D. Schnabel, J.F. Taylor and D. Gianola 2013. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models. Genetics Selection Evolution 2013, 45:34. [DOI:10.1186/1297-9686-45-34]
20. Ruhil, P., R.S. Gandhi, D. Monalisa, K. Behra and T.V. Raja. 2011. Prediction of Lactation Yield based on Partial Lactation Records Using Artificial Neural Networks. Proceedings of the 5 th National Conference; INDIACom-2011. Bharati Vidyapeeth's Institute of Computer Applications and Management, New Delhi.
21. Seo, K.W., H.T. Kim, D.W. Lee and Y.C. Yoon. 2011. Image processing algorithms for weight estimation of dairy cattle. Baio Si'SEU'tem gonghag. [DOI:10.5307/JBE.2011.36.1.48]
22. Shahinfar, S., H. Mehrabani-Yeganeh, C. Lucas, A. Kalhor, M. Kazemian and K.A. Weigel. 2012. Prediction of breeding values for dairy cattle using artificial neural networks and neuro-fuzzy systems. Computational and Mathematical Methods in Medicine, Article ID 127130, 9 p. [DOI:10.1155/2012/127130]
23. Shojaei, M.H., H. Mortezapour, K. Jafari Naimi and M.M. Maharlooei. 2018 Temperature prediction of a greenhouse equipped with evaporative cooling system using regression models and artificial neural network (Case Study in Kerman City). Iranian Journal of Agricultural Machinery Engineering, 49(4): 567-576 (In Persian).
24. Wang, Y., W. Yang, P. Winter and L. Walker. 2008. Walk-through weighing of pigs using machine vision and an artificial neural network. Biosystems Engineering, 100: 117-125. [DOI:10.1016/j.biosystemseng.2007.08.008]
25. Yaqub, M., B. Eren and V. Eyüpoğlu. 2016. Assessment of neural network training algorithms for the prediction of polymeric inclusion membranes efficiency. SAÜ Fen Bil Der 20. Cilt, 3. Sayı, s. 533-542. [DOI:10.16984/saufenbilder.14165]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2023 CC BY-NC 4.0 | Research On Animal Production(Scientific and Research)

Designed & Developed by : Yektaweb