1. Abdi, J., J. Garssen, J. Faber and F.A. Redegeld. 2014. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells. Journal of Nutritional Biochemistry, 25(12): 1254-1262. [
DOI:10.1016/j.jnutbio.2014.06.013]
2. Abdollahi, A., A. Akhlaghi, M.J. Zamiri, A. Niazi, S. Kargar and Z. Ansari Pirsaraei. 2020. The Effects of Different Fish Oil Levels on Productive and Reproductive Performance and Blood Attributes In Female Chukar Partridges (Alectoris Chukar). Research on Animal Production, 11(29).
3. Arner, P. and A. Kulyte. 2015. MicroRNA regulatory networks in human adipose tissue and obesity. Nature Reviews: Endocrinology, 11(5): 276-288. [
DOI:10.1038/nrendo.2015.25]
4. Awada, M., C.O. Soulage, A. Meynier, C. Debard, P. Plaisancie, B. Benoit and M.C. Michalski. 2012. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: role of intestinal absorption of 4-HHE and reactivity in intestinal cells. Journal of Lipid Research, 53(10): 2069-2080. [
DOI:10.1194/jlr.M026179]
5. Davidson, L.A., N. Wang, M.S. Shah, J.R. Lupton, I. Ivanov and R.S. Chapkin. 2009. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis, 30(12): 2077-2084. [
DOI:10.1093/carcin/bgp245]
6. Ellis, J.M., L.O. Li, P.C. Wu, T.R. Koves, O. Ilkayeva, R.D. Stevens and R.A. Coleman. 2010. Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metabolism, 12(1): 53-64. [
DOI:10.1016/j.cmet.2010.05.012]
7. Green, C.J., C. Pramfalk, C.A. Charlton, P.J. Gunn, T. Cornfield, M. Pavlides and L. Hodson. 2020. Hepatic de novo lipogenesis is suppressed and fat oxidation is increased by omega-3 fatty acids at the expense of glucose metabolism. BMJ open diabetes research and care, 8(1): e000871. [
DOI:10.1136/bmjdrc-2019-000871]
8. Han, S., X. Sun, J.D. Ritzenthaler and J. Roman. 2009. Fish oil inhibits human lung carcinoma cell growth by suppressing integrin-linked kinase. Molecular Cancer Research, 7(1): 108-117. [
DOI:10.1158/1541-7786.MCR-08-0384]
9. Hanada, H., K. Morikawa, K. Hirota, M. Nonaka and Y. Umehara. 2011. Induction of apoptosis and lipogenesis in human preadipocyte cell line by n-3 PUFAs. Cell Biology International, 35(1): 51-59. [
DOI:10.1042/CBI20100070]
10. Huang, Q., C. Ma, L. Chen, D. Luo, R. Chen and F. Liang. 2018. Mechanistic Insights Into the Interaction Between Transcription Factors and Epigenetic Modifications and the Contribution to the Development of Obesity. Frontiers in Endocrinology, 9: 370. [
DOI:10.3389/fendo.2018.00370]
11. LeMay-Nedjelski, L., J.K. Mason-Ennis, A. Taibi, E.M. Comelli and L.U. Thompson. 2018. Omega-3 Polyunsaturated Fatty Acids Time-Dependently Reduce Cell Viability and Oncogenic MicroRNA-21 Expression in Estrogen Receptor-Positive Breast Cancer Cells (MCF-7). International Journal of Molecular Sciences, 19(1): 244. [
DOI:10.3390/ijms19010244]
12. Li, J.Z., H. Qu, J. Wu, F. Zhang, Z.B. Jia, J.Y. Sun and K. Kang. 2018. Metabolic profiles of adipose-derived and bone marrow-derived stromal cells from elderly coronary heart disease patients by capillary liquid chromatography quadrupole time-of-flight mass spectrometry. International Journal of Molecular Medicine, 41(1): 184-194. [
DOI:10.3892/ijmm.2017.3198]
13. Lorente-Cebrian, S., A.G. Costa, S. Navas-Carretero, M. Zabala, J.A. Martinez and M.J. Moreno-Aliaga. 2013. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. Journal of Physiology and Biochemistry, 69(3): 633-651. [
DOI:10.1007/s13105-013-0265-4]
14. Manickam, E., A.J. Sinclair and D. Cameron-Smith. 2010. Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes. Lipids in Health and Disease, 9: 57. [
DOI:10.1186/1476-511X-9-57]
15. Martinez-Fernandez, L., L.M. Laiglesia, A.E. Huerta, J.A. Martinez and M.J. Moreno-Aliaga. 2015. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins and Other Lipid Mediators, 121(Pt A): 24-41. [
DOI:10.1016/j.prostaglandins.2015.07.003]
16. Meale, S. J., J.M. Romao, M.L. He, A.V. Chaves, T.A. McAllister and L.L. Guan. 2014. Effect of diet on microRNA expression in ovine subcutaneous and visceral adipose tissues. Journal of Animal Science, 92(8): 3328-3337. [
DOI:10.2527/jas.2014-7710]
17. Moustaka, K., E. Maleskou, A. Lambrianidou, S. Papadopoulos, M.E. Lekka, T. Trangas and E. Kitsiouli. 2019. Docosahexaenoic acid inhibits proliferation of EoL-1 leukemia cells and induces cell cCycle arrest and cell differentiation. Nutrients, 11(3): 574. [
DOI:10.3390/nu11030574]
18. Murali, G., C.V. Desouza, M.E. Clevenger, R. Ramalingam and V. Saraswathi. 2014. Differential effects of eicosapentaenoic acid and docosahexaenoic acid in promoting the differentiation of 3T3-L1 preadipocytes. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 90(1): 13-21. [
DOI:10.1016/j.plefa.2013.10.002]
19. Music, E., K. Futrega and M.R. Doran. 2018. Sheep as a model for evaluating mesenchymal stem/stromal cell (MSC)-based chondral defect repair. Osteoarthritis and Cartilage, 26(6): 730-740. [
DOI:10.1016/j.joca.2018.03.006]
20. Naderi, N., E.J. Combellack, M. Griffin, T. Sedaghati, M. Javed, M.V. Findlay and I.S. Whitaker. 2017. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int. Wound J., 14(1): 112-124. [
DOI:10.1111/iwj.12569]
21. Navidshad, B. 2013. Effects of Dietary Inclusion of Fish Oil, Soybean Oil, Palm Oil or Conjugated Linoleic Acid Supplementation on Performance and Meat Fatty Acid Composition of Broiler Chickens. Research on Animal Production, 4(7): 35-46.
22. Nguyen, Q.V., B.S. Malau-Aduli, J. Cavalieri, A.A.E.O. Malau-Aduli and P.D. Nichols. 2019. Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived foods for human consumption. Nutrients, 11(4). [
DOI:10.3390/nu11040743]
23. Pittenger, M.F., A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca and D.R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411): 143-147. [
DOI:10.1126/science.284.5411.143]
24. Rodriguez-Cuenca, S., S. Carobbio, V.R. Velagapudi, N. Barbarroja, J.M. Moreno-Navarrete, F.J. Tinahones and A. Vidal-Puig. 2012. Peroxisome proliferator-activated receptor gamma-dependent regulation of lipolytic nodes and metabolic flexibility. Molecular and Cellular Biology, 32(8): 1555-1565. [
DOI:10.1128/MCB.06154-11]
25. Romao, J. M., W. Jin, M.V. Dodson, G.J. Hausman, S.S. Moore and L.L. Guan. 2011. MicroRNA regulation in mammalian adipogenesis. Experimental Biology and Medicine (Maywood, N.J.), 236(9): 997-1004. [
DOI:10.1258/ebm.2011.011101]
26. Sam, M.R., M. Tavakoli-Mehr and R. Safaralizadeh. 2018. Omega-3 fatty acid DHA modulates p53, survivin, and microRNA-16-1 expression in KRAS-mutant colorectal cancer stem-like cells. Genes and Nutrition, 13(8): 1-12. [
DOI:10.1186/s12263-018-0596-4]
27. Sanjurjo-Rodriguez, C., R. Castro-Vinuelas, T. Hermida-Gomez, T. Fernandez-Vazquez, I.M. Fuentes-Boquete, F.J. de Toro-Santos and F.J. Blanco-Garcia. 2017. Ovine mesenchymal Stromal Cells: Morphologic, Phenotypic and Functional Characterization for osteochondral tissue engineering. PloS One, 12(1): e0171231. [
DOI:10.1371/journal.pone.0171231]
28. Sethi, J.K. and A.J. Vidal-Puig. 2007. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research, 48(6): 1253-1262. [
DOI:10.1194/jlr.R700005-JLR200]
29. Shi, C., F. Huang, X. Gu, M. Zhang, J. Wen, X. Wang and X. Guo. 2016. Adipogenic miRNA and meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget, 7(26): 40830-40845. [
DOI:10.18632/oncotarget.8518]
30. Siersbaek, R., R. Nielsen and S. Mandrup. 2010. PPARgamma in adipocyte differentiation and metabolism--novel insights from genome-wide studies. FEBS Letters, 584(15): 3242-3249. [
DOI:10.1016/j.febslet.2010.06.010]
31. Skarn, M., H.M. Namlos, P. Noordhuis, M.Y. Wang, L.A. Meza-Zepeda and O. Myklebost. 2012. Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev, 21(6): 873-883. [
DOI:10.1089/scd.2010.0503]
32. So, W.W., W.N. Liu and K.N. Leung. 2015. Omega-3 Polyunsaturated Fatty Acids Trigger Cell Cycle Arrest and Induce Apoptosis in Human Neuroblastoma LA-N-1. Cells. Nutrients, 7(8): 6956-6973. [
DOI:10.3390/nu7085319]
33. Sun, T., M. Fu, A.L. Bookout, S.A. Kliewer and D.J. Mangelsdorf. 2009. MicroRNA let-7 regulates 3T3-L1 adipogenesis. Molecular Endocrinology, 23(6): 925-931. [
DOI:10.1210/me.2008-0298]
34. Tanabe, Y., Y. Matsunaga, M. Saito and K. Nakayama. 2008. Involvement of cyclooxygenase-2 in synergistic effect of cyclic stretching and eicosapentaenoic acid on adipocyte differentiation. Journal of Pharmacological Sciences, 106(3): 478-484. [
DOI:10.1254/jphs.FP0071886]
35. Todorcevic, M. and L. Hodson. 2015. The effect of marine derived n-3 fatty acids on adipose tissue metabolism and function. J. Clin. Med., 5(1). [
DOI:10.3390/jcm5010003]
36. Wei, J., H. Li, S. Wang, T. Li, J. Fan, X. Liang and R.C. Zhao. 2014. let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev., 23(13): 1452-1463. [
DOI:10.1089/scd.2013.0600]
37. Yun, U.J., N.J. Song, D.K. Yang, S.M. Kwon, K. Kim, S. Kim and H. Kang. 2015. miR-195a inhibits adipocyte differentiation by targeting the preadipogenic determinator Zfp423. Journal of Cellular Biochemistry, 116(11): 2589-2597. [
DOI:10.1002/jcb.25204]
38. Zaiou, M., H. El Amri and A. Bakillah. 2018. The clinical potential of adipogenesis and obesity-related microRNAs. Nutrition, Metabolism, and Cardiovascular Diseases, 28(2): 91-111. [
DOI:10.1016/j.numecd.2017.10.015]
39. Zhang, Y.F., H.M. Xu, F. Yu, M. Wang, M.Y. Li, T. Xu and P.F. Li. 2018. Crosstalk between microRNAs and peroxisome proliferator-activated receptors and their emerging regulatory roles in cardiovascular pathophysiology. PPAR Res., 8530371. [
DOI:10.1155/2018/8530371]