1. Aliloo, H., R. Mrode, A.M. Okeyo, G. Ni, M.E. Goddard and J.P. Gibson. 2018. The feasibility of using low-density marker panels for genotype imputation and genomic prediction of crossbred dairy cattle of East Africa. Journal Dairy Science, 101: 9108-9127. [
DOI:10.3168/jds.2018-14621]
2. Boichard, D., H. Chung, R. Dassonneville, X. David, A. Eggen, S. Fritz, K.J. Gietzen, B.J. Hayes, C. T. Lawley, T.S. Sonstegard, C.P. Van Tassell, P.M. VanRaden, K.A. Viaud-Martinez, G.R. Wiggans, and Bovine L.D. Consortium. 2012. Design of a bovine low-density SNP array optimized for imputation. PLoS One, 7: e34130. [
DOI:10.1371/journal.pone.0034130]
3. Bolormaa, S., K. Gore, J.H.J. van der Werf, B.J. Hayes and H.D. Daetwyler. 2015. Design of a low density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy. Animal Genetics, 46: 544-556. [
DOI:10.1111/age.12340]
4. Bouwman, A.C. and R.F. Veerkamp. 2014. Consequences of splitting whole genome sequencing effort over multiple breeds on imputation accuracy. BMC Genetic, 15: 105. [
DOI:10.1186/s12863-014-0105-8]
5. Browning, B., Zhou, Y. and S. Browning. 2018. A one-penny imputed genome from next-generation reference panels. The American Journal of Human Genetics, 103: 338-348. [
DOI:10.1016/j.ajhg.2018.07.015]
6. Browning, B.L. and S.R. Browning. 2016. Genotype imputation with millions of reference samples. American Journal of Human Genetics, 98: 116-126. [
DOI:10.1016/j.ajhg.2015.11.020]
7. de Roos, A.P.W., B.J. Hayes, R.J. Spelman and M.E. Goddard. 2008. Linkage disequilibrium and persistence of phase in Holstein- Friesian, Jersey and Angus cattle. Genetics, 179: 1503-1512. [
DOI:10.1534/genetics.107.084301]
8. Habier, D., R.L. Fernando and J.C.M. Dekkers. 2009. Genomic selection using low-density marker panels. Genetics, 182: 343-353. [
DOI:10.1534/genetics.108.100289]
9. Hozé, C., M.N. Fouilloux, E. Venot, F. Guillaume, R. Dassonneville, S. Fritz, V. Ducrocq, F. Phocas, D. Boichard and P. Croiseau. 2013. High-density marker imputation accuracy in sixteen French cattle breeds. Genetic Selection Evolution, 45: 33. [
DOI:10.1186/1297-9686-45-33]
10. Ghoreishifar S.M., H. Moradi-Shahrbabak, M. Moradi-Shahrbabak, E.L. Nicolazzi, J.L. Williams, D. Iamartino and A. Nejati- Javaremi. 2018. Accuracy of imputation of single-nucleotide polymorphism marker genotypes for water buffaloes (Bubalusbubalis) using different reference population sizes and imputation tools. Livestock Science, 216: 174-182. [
DOI:10.1016/j.livsci.2018.08.009]
11. Korkuc, P., D. Arneds and G.A. Brockmann. 2019. Finding the optimal imputation strategy for small cattle populations animal breeding biology and molecular genetics. Frontiers in Genetics, 10: 52-59. [
DOI:10.3389/fgene.2019.00052]
12. Ma, P., R.F. Brøndum, Q. Zhang, M.S. Lund and G. Su. 2013. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. Journal Dairy Science, 96: 4666-4677. [
DOI:10.3168/jds.2012-6316]
13. Ma, P., R.F. Brondum, Q. Zhang, M.S. Lund and G. Su. 2013. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. Journal Dairy Science, 96: 4666-4677. [
DOI:10.3168/jds.2012-6316]
14. Meuwissen, T., B. Hayes and M. Goddard. 2016. Genomic selection: A paradigm shift in animal breeding. Animal Frontiers, 6: 6-14. [
DOI:10.2527/af.2016-0002]
15. Milanesi, M., D. Vicario, A. Stella, A. Valentini, P. Ajmone‐Marsan, S. Biffani, F. Biscarini, G. Jansen and E.L. Nicolazzi. 2015. Imputation accuracy is robust to cattle reference genome updates. Animal Genetics, 46: 69-72. [
DOI:10.1111/age.12251]
16. Mohammadi, Y. and M. Mokhtari. 2017. Genomic selection accuracy parametric and nonparametric statistical methods with additive and dominance genetic architectures. Research on Animal Production, 8(18): 161-167 (In Persian). [
DOI:10.29252/rap.8.18.161]
17. Mulder H., M. Calus, T. Druet and C. Schrooten. 2012. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. Journal of Dairy Science, 95: 876-889. [
DOI:10.3168/jds.2011-4490]
18. Ogawa, S., H. Matsuda, Y. Taniguchi, T. Watanabe, A. Takasuga, Y. Sugimoto and H. Iwaisaki. 2016. Accuracy of imputation of single nucleotide polymorphism marker genotypes from low‐density panels in Japanese Black cattle. Journal Animal Science, 87: 3-12. [
DOI:10.1111/asj.12393]
19. Pausch, H., I.M. MacLeod, R. Fries, R. Emmerling, P.J. Bowman and H.D. Daetwyler. 2017. Evaluation of the accuracy of imputed sequence variant genotypes and their utility for causal variant detection in cattle. Genetic Selection Evolution, 49: 1-10. [
DOI:10.1186/s12711-017-0301-x]
20. Pausch, H., B. Aigner, R. Emmerling, C. Edel, K.U. Götz and R. Fries. 2013. Imputation of high-density genotypes in the Fleckvieh cattle population. Genetic Selection Evolution, 45: 3. [
DOI:10.1186/1297-9686-45-3]
21. Nicolazzi, E., S. Biffani and G. Jansen. 2013. Short communication: Imputing genotypes using PedImpute fast algorithm combining pedigree and population information. Journal of Dairy Science, 96: 2649-2653. [
DOI:10.3168/jds.2012-6062]
22. Sargolzaei, M., J.P. Chesnais and F.S. Schenkel. 2014. A new approach for efcient genotype imputation using information from relatives. BMC Genomics, 15. [
DOI:10.1186/1471-2164-15-478]
23. Sargolzaei M. and F.S. Schenkel. 2009. QMSim: a large-scale genome simulator for livestock. Bioinformatics, 25: 680-1. [
DOI:10.1093/bioinformatics/btp045]
24. Van Binsbergen, R., M.C. Bink, M.P. Calus, F.A. van Eeuwijk, B.J. Hayes and I. Hulsegge. 2014. Accuracy of imputation to whole-genome sequence frontiers in genetics data in Holstein Friesian cattle. Genetic Selection Evolution, 46: 41. [
DOI:10.1186/1297-9686-46-41]
25. VanRaden P., C. Sun and J. O'Connell. 2015. Fast imputation using medium or low-coverage sequence data. BMC Genetics, 16(82): 2039-2042. [
DOI:10.1186/s12863-015-0243-7]
26. Ventura, R.V., D. Lu, F.S. Schenkel, Z. Wang, C. Li and S.P. Miller. 2014. Impact of reference population on accuracy of imputation from 6K to 50K single nucleotide polymorphism chips in purebred and crossbreed beef cattle1. Journal Animal Science, 92: 1433-1444. [
DOI:10.2527/jas.2013-6638]
27. Wang, Z. and N. Chatterjee. 2017. Increasing mapping precision of genome wide association studies: to genotype and impute, sequence, or both? Genome Biology, 18: 17-19. [
DOI:10.1186/s13059-017-1255-6]