Volume 10, Issue 24 (9-2019)                   rap 2019, 10(24): 103-111 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

arabiyan E, Hashemi S R, Yamchi A, Davoodi H, Rostami S. (2019). Evaluation of NF-kB Gene Expression in liver tissue of Broiler Chickens fed with Silver Nanoparticles as an Indicator of Inflammation Induction in Heat Stress Conditions. rap. 10(24), 103-111. doi:10.29252/rap.10.24.103
URL: http://rap.sanru.ac.ir/article-1-984-en.html
Gorgan University of Agricultural and Natural Resources
Abstract:   (3619 Views)
Heat stress is one of the most important immunosuppressive factors in poultry industry and heat stress has been associated with increases reactive oxygen species and oxidative stress in cells. Since the nuclear factor kappa-B is known as fast cellular response factor to endogenous stress; this study was conducted to evaluate relative gene expression in broiler chicken with 450 one-day-old Cobb 500 broiler chickens for 42 days. Treatments included: (1) basal diet (control), (2) basal diet containing 1% zeolite, (3) basal diet containing 1% of zeolite-coated with 0.5% silver nanoparticles, (4) Basal diet containing with 0.15% organic acids and (5) Basal diet containing 1% of zeolite-coated with 0.5% of silver nanoparticles and 0.15% organic acids in with or without heat stress condition. Liver biopsy was done in 21st and 42nd days of experiment. Results demonstrated the level of nuclear factor kappa-B relative gene expression in the 21st and 42nd days of experiment with heat stress condition in zeolite treatment and 42nd days of experiment without heat stress condition in silver nanoparticles coated with zeolite in combination with organic acid in broiler liver was significant increase expression comparison with control and all treatments (P<0.05). In conclusion results showed that zeolite and silver nanoparticles identified as an inorganic, chemical and exogenous substances in body tissues and liver identified this substances as a xenobiotics and up-regulated expression of index genes in oxidative stress pathways and inflammation. Whereas this effect is not identified in organic acid.
Full-Text [PDF 1031 kb]   (852 Downloads)    
Type of Study: Research | Subject: فیزیولوژی
Received: 2019/01/15 | Revised: 2019/09/21 | Accepted: 2019/06/2 | Published: 2019/09/18

References
1. Chen, J., B. Bhandar and M. Kavdia. 2015. Interaction of ROS and RNS with GSH and GSH/GPX systems. The FASEB Journal, 29: 636-637.
2. Ciftci, M., U.G. Simsek, M.A. Azman, I.H. Cerci and F. Tonbak. 2013. The effects of dietary rosemary (Rosmarinus officinalis l) oil supplementation on performance, carcass traits and some blood parameters of Japanese quail under heat stressed condition. Ankara Universitesy Veteriner Fakültesi Dergisi, 19: 595-599. [DOI:10.9775/kvfd.2012.8474]
3. Curi, R., P. Newsholme, M.M.R. Lima, T.C. Pithon-curi and J. Procopio. 2003. Glutamine and glutamate-their central role in cell metabolism and function. Cell Biochemistry and Function, 21: 1-9. [DOI:10.1002/cbf.1003]
4. Esmaili, M., S.R. Hashemi, Y. Jafari Ahangari, S. Hassani and A. Shabani. 2017. Effect of different levels of silver nanoparticles coated with zeolite on performance, function of superoxide dismutase and glutathione peroxidase, carcass characteristics and internal organs weight of broiler chickens. Animal Production Research, 4: 1-11.
5. Gilmore, T.D. 2006. Introduction to NF-kB: Players, pathways, perspectives. Oncogene, 25: 6680-6684. [DOI:10.1038/sj.onc.1209954]
6. Hsin, Y.H., C.F. Chen, S. Huang and T.S. Shih. 2008. The apoptotic effect of nanosilver is mediated by a ROS-and JNK dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, 179:130-139. [DOI:10.1016/j.toxlet.2008.04.015]
7. Jiang, Z.Y., L.H. Sun, Y.C. Lin, X.Y. Ma, C.T. Zheng, G.L. Zhou, F. Chen and S.T. Zou. 2009. Effects of dietary glycyl-glutamine on growth performance, small intestinal integrity, and immune responses of weaning piglets challenged with lipopolysaccharide. Journal of Animal Science, 87: 4050-4056. [DOI:10.2527/jas.2008-1120]
8. Jiang, Y., W. Zhang, F. Goa and G. Zhou. 2015. Effect of sodium butyrate on intestinal inflammatory response to lipopolysaccharide in broiler chickens. Canadian Journal of Animal Science, 95: 389-395. [DOI:10.4141/cjas-2014-183]
9. Kreyling, W.G. 2010. A complementary definition of nanomaterial. Nano Today, 5: 165-168. [DOI:10.1016/j.nantod.2010.03.004]
10. Li, Y., D.H. Chen, J. Yan, Y. Chen, R.A. Mittelstaedt, Y. Zhang, A.S. Biris, R.H. Heflich and T. Chen. 2012. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research, 14: 4-10. [DOI:10.1016/j.mrgentox.2011.11.010]
11. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct. Method, 25: 402-408. [DOI:10.1006/meth.2001.1262]
12. Martirosyan, A., A. Bazes and Y.J. Schneider. 2014. In vitro toxicity assessment of silver nanoparticles in the presence of phenolic compounds-preventive agents against the harmful effect? Nanotoxicology, 8: 573-582. [DOI:10.3109/17435390.2013.812258]
13. Morones, J.R., J.L. Elechiguerra, A. Camacho and J.T. Ramirez. 2018. The bactericidal effect of silver nanoparticles. Nanotechnology, 16: 2346-2353. [DOI:10.1088/0957-4484/16/10/059]
14. Nagal, R. and R.K. Singla. 2013. Nanoparticles in different delivery systems: A brief review. Indo Global Journal of Pharmaceutical Sciences, 3: 96-106.
15. Oberdorster, G., V. Stone and K. Donaldson. 2007. Toxicology of nanoparticles: A historical perspective. Nanotoxicology, 1: 2-25. [DOI:10.1080/17435390701314761]
16. Pinedaa, L., E. Sawoszb, K.P. Vadalasettya and A. Chwalibog. 2013. Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Animal Feed Science and Technology, 186: 125-129. [DOI:10.1016/j.anifeedsci.2013.08.012]
17. Reiner, E., Z. Radic and V. Simeon-Rudolf. 2007. Mechanisms of organophosphate toxicity and detoxication with emphasis on studies in Croatia. Toxicity and Detoxification of Organophosphates, 58: 329-338. [DOI:10.2478/v10004-007-0026-2]
18. Ribeiro, C.V., L. Belger, E. Pelletier and C. Rouleau. 2002. Histopathological evidence of inorganic mercury and methy lemercury toxicity in Arcitic charr (Salvelinus aipines). Environmental Research, 90: 217-225. [DOI:10.1016/S0013-9351(02)00025-7]
19. Rose, W.L., R.M. Nisbet, P.G. Green, S. Norris, T. Fan, E.H. Smith, G.N. Cherr and S.L. Anderson. 2006. Using an integrated approach to link biomarker responses and Physiological stress to growth impairment of cadmium-exposed larval topsmelt. Aquatic Toxicology, 80: 298-308. [DOI:10.1016/j.aquatox.2006.09.007]
20. Roy, R., R. Kumar and A. Tripathi. 2014. Intractive threats of nanoparticles to the biological system. Immunology Letters, 158: 79-87. [DOI:10.1016/j.imlet.2013.11.019]
21. Salari-Joo, H.R., M.R. Kalbassi and S.A. Johari. 2012. Effect of water salinity on acute toxicity of colloidal silver nanoparticles in rainbow trout (Oncorhynchus mykiss) larvae. Iranian Journal of Health and Environment, 5: 121-132.
22. Sambrook, J. and D.W. Russel. 2001. Molecular cloning: a laboratory manual. New York, California, Academic Press, PP: 94-98.
23. Shoelson, S.E., J. Lee and M. Yuan. 2003. Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance. International Journal of Obesity, 27: 49-52. [DOI:10.1038/sj.ijo.0802501]
24. Singh, N., B. Manshian, G.J. Jenkins, S.M. Griffiths, P.M. Williams and T.G. Maffeis. 2009. Nano Genotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30: 3891-3914. [DOI:10.1016/j.biomaterials.2009.04.009]
25. Smical, I. 2011. Properties of natural zeolites in benefit of nutrition and health. Human and Veterinary Medicine-Bioflux, 3: 51-57.
26. Susan, W.P.W., J.J.M. Willie, A.H. Carla, I.H. Werner, E.H.W. Heugens, B. Roszek, J. Bisschops and I. Gosens. 2009. Nano-silver-a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3: 109-138. [DOI:10.1080/17435390902725914]
27. Tabatabaei, S.M., R. Badalzade, GH.R. Mohammadnezhad and R. Balaei. 2015. Effects of Cinnamon extract on biochemical enzymes, TNF-α and NF-κB gene expression levels in liver of broiler chickens inoculated with Escherichia coli. Pesquisa Veterinaria Brasileira, 35: 781-787. [DOI:10.1590/S0100-736X2015000900003]
28. Tang, Z.G., G.Y. Chen, L.F. Li, C. Wen, T. Wang and Y.M. Zhou. 2015. Effect of zinc-bearing zeolite clinoptilolite on growth performance, zinc accumulation, and gene expression of zinc transporters in broilers. American Society of Animal Science, 93:620-626. [DOI:10.2527/jas.2014-8165]
29. Wijnhoven, S.W.P., W.J.G. Peijnenburg, C.A. Herberts, W.I. Hagens, A.G. Oomen and E.H.W. Heugens. 2009. Nanosilver: A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3: 109-138. [DOI:10.1080/17435390902725914]
30. Wu, Q.J., L.C. Wang, Y.M. Zhou, J.F. Zhang and T. Wang. 2013. Effects of clinoptilolite and modified clinoptilolite on the growth performance, intestinal microflora, and gut parameters of broilers. Poultry Science, 92: 684-692. [DOI:10.3382/ps.2012-02308]
31. Zhang, K.Y., F. Yan, C.A. Keen and P.W. Waldroup. 2005. Evaluation of microencapsulated essential oils and organic acids in diets for broiler chickens. International Journal of Poultry Science, 4: 612-619. [DOI:10.3923/ijps.2005.612.619]
32. Zhang, X.F., W. Shen and S. Gurunathan. 2016. Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. International Molecular Journal of Science, 17: 1-26. [DOI:10.3390/ijms17101603]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb