Volume 9, Issue 21 (11-2018)                   rap 2018, 9(21): 120-128 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pish Jang Aghajeri J, Rahimi mianji G, Hafezian H, Gholizadeh M. Genetic Diversity of TLR4 and IL2 Loci Involved In Immune System in Some Iranian Indigenous Chicken Breeds. rap. 2018; 9 (21) :120-128
URL: http://rap.sanru.ac.ir/article-1-834-en.html
Abstract:   (533 Views)
I   In this study, allelic polymorphism in candidate genes of TLR4 and IL2 involved in the immune system in four Iranian indigenous chickens were examined using PCR-RFLP technique. A total of 200 birds including common, West Azerbaijan, Marandi, Mazandarani indigenous chicken breeds were selected. For detection of mutation in TLR4 (257 bp) and IL2 (600 bp) genes the PCR products were digested by Sau96I and HphI restriction enzymes, respectively. Two alleles of C (138 and 119 bp) and G (119, 99 and 39 bp) and three genotypes of CC, CG and GG were identified in TLR4 marker site. Following the enzymatic digestion of the IL2 gene, two alleles of A (465, 64, 40 and 31bp) and B (454, 64, 40, 31 and 11 bp) and three genotypes of AA, AB and BB were identified. The whole populations was in Hardy-Weinberg equilibrium for TLR4 and IL2 marker sites. The calculated Shannon information index and fixation index values for TLR4 and IL2 marker sites was estimated to be (0.56 and 0.69) and (-0.05 and -0.10), respectively. The highest observed heterozygosity value for TLR4 and IL2 loci was estimated to be (0.55 and 0.40), respectively. Regarding to the existence of polymorphism in the studied loci and reduction of heterozygosity in these populations, the occurrence of non-random crosses can be prevented. This leads to an increase in heterozygosity and thus prevents the loss of genetic diversity in the populations would be. In the populations also, by studying the immune responses associated with these two loci, these sites can be used as suitable markers in breeding programs for increase of resistance to diseases in indigenous chickens.
Full-Text [PDF 1042 kb]   (140 Downloads)    
Type of Study: Research | Subject: ژنتیک و اصلاح نژاد طیور
Received: 2017/11/28 | Revised: 2018/11/27 | Accepted: 2018/01/10 | Published: 2018/11/27

References
1. Al-Atiyat, R. 2010. Genetic diversity of indigenous chicken ecotypes in Jordan. African Journal of Biotechnology, 9: 7014-7019.
2. Alinaghizadeh, H., M.R. Mohammad Abadi and S. Zakizadeh. 2010. Exon 2 of BMP15 gene polymorphismin Jabal Barez red goat. Journal of Agricultural Biotechnology, 2(1): 69-80 (In Persian).
3. Allendorf, F.W. and R.F. Leary. 1986. Heterozygosity and fitness in natural populations of animals. Conservation Biology: The Science of Scarcity and Diversity, pp: 57-76.
4. Bulumulla, P.B.A.I.K., P. Silva and H. Jianlin. 2011. Genetic diversity at toll like receptor 7 (TLR7) genes of Sri Lankan indigenous chicken and Ceylon jungle fowl (Gallus lafayetti). Tropical Agricultural Research, 22(4): 367-373. [DOI:10.4038/tar.v22i4.3787]
5. Corander, J., P. Waldmann and M.J. Sillanpää. 2003. Bayesian analysis of genetic differentiation between populations. Genetics, 163: 367-374.
6. Estess, P., A. Nandi, M. Mohamadzadeh and M.H. Siegelman. 1999. Interleukin 15 induces endothelial hyaluronan expression in vitro and promotes activated T cell extravasations through a CD44-dependent pathway in uivo. The Journal of Experimental Medicine, 190: 9-19. [DOI:10.1084/jem.190.1.9]
7. Hemati, B., M.H. Banabazi, S. Shahkarami, E. Mohandesan and P. Burger. 2017. Genetic diversity within Bactrian camel population of Ardebil province. Research on Animal Production, 8(16): 192-197 (In Persian). [DOI:10.29252/rap.8.16.192]
8. Jaiswal, G., S. Kumar, Y. Prasad and D.P. Singh. 2009. PCR-RFLP analysis of IL-2Rγ and IL-15Rα genes in Kadakanath native chicken. Journal of Applied Animal Research, 36: 239-242. [DOI:10.1080/09712119.2009.9707068]
9. Javanmard, A., M.R. Mohammadabadi, G.E. Zarrigabayi, A.A. Gharahedaghi, M.R. Nassiry, A. Javadmansh and N. Asadzadeh. 2008. Polymorphism within the intron region of the bovine leptin gene in Iranian Sarabi cattle (Iranian Bos Taurus). Russian Journal of Genetics, 44 (4): 495-497. [DOI:10.1134/S1022795408040169]
10. Keller, L.F. and D.M. Waller. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17: 230-241. [DOI:10.1016/S0169-5347(02)02489-8]
11. Kogut, M., L. Rothwell and P. Kaiser. 2003. Priming by recombinant chicken interleukin-2 induces selective expression of IL-8 and IL-18 mRNA in chicken heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enteric serovar enteritidis. Journal of Molecular Immunology, 40: 603-610. [DOI:10.1016/j.molimm.2003.08.002]
12. Köllisch, G., B.N. Kalali, V. Voelcker, R. Wallich, H. Behrendt, J. Ring, S. Bauer, T. Jakob, M. Mempel and M. Ollert. 2005. Various members of the Toll‐like receptor family contribute to the innate immune response of human epidermal keratinocytes. Immunology, 114: 531-541. [DOI:10.1111/j.1365-2567.2005.02122.x]
13. Kumar, R., S. Kumar, D.P. Singh and P. Gaur. 2007. DNA polymorphism at IL-2Rγ and IL-15Rα genes in Aseel native chicken. Journal of Applied Animal Research, 32: 107-110. [DOI:10.1080/09712119.2007.9706857]
14. Levene, H. 1949. On a matching problem in genetics. The Annals of Mathematical Statistics, 20: 91-94. [DOI:10.1214/aoms/1177730093]
15. Leveque, G., V. Forgetta, S. Morroll, A.L. Smith, N. Bumstead, P. Barrow, J. Loredo-Osti, K. Morgan and D. Malo. 2003. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar Typhimurium infection in chickens. Infection and Immunity, 71: 1116-1124. [DOI:10.1128/IAI.71.3.1116-1124.2003]
16. Maghsoudi, S.M. and A. Pakdel. 2008. Review of effective genetical methods to induce disease resistance in farm animals. Proceedings of the 1th National conference of the livestock and poultry industry, 1-6 pp., Gorgan, Iran. (In Persian).
17. McDonald, D.G. and J. Dimmick. 2003. The conceptualization and measurement of diversity. Communication Research, 30: 60-79. [DOI:10.1177/0093650202239026]
18. Miller, S.A., D.D. Dykes and H.F. Polesky. 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3): 12-15. [DOI:10.1093/nar/16.3.1215]
19. Moazeni, S., M.R. Mohammadabadi, M. Sadeghi, H. Shahrbabak, A. Koshkoieh and F. Bordbar .2016a. Association between UCP gene polymorphisms and growth, breeding value of growth and reproductive traits in Mazandaran indigenous chicken. Open Journal of Animal Sciences, 6(1): 1-8. [DOI:10.4236/ojas.2016.61001]
20. Moazeni, S.M., M.R. Mohammadabadi, M. Sadeghi, H. Moradi Shahrbabak and A.K. Esmailizadeh. 2016b. Association of the melanocortin-3 (MC3R) receptor gene with growth and reproductive traits in Mazandaran indigenous chicken. Journal of Livestock Science and Technologies, 4(2): 51-56.
21. Mohammadabadi, M.R., M. Nikbakhti, H.R. Mirzaee, A. Shandi, D.A. Saghi, M.N. Romanov and I.G Moiseyeva. 2010. Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Russian journal of genetics, 46(4): 505-509. [DOI:10.1134/S1022795410040198]
22. Mohammadi, A., M.R. Nassiry, J. Mosafer, M.R. Mohammadabadi and G.E. Sulimova. 2009. Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the Iranian cattle breed Sistani (Bos indicus). Russian journal of genetics, 45(2): 198-202. [DOI:10.1134/S1022795409020100]
23. Mohammadifar, A. and M.R. Mohammadabadi. 2011. Application of microsatellite markers for a study of Kermani sheep genome. Iranian journal of Animal Science, 42(4): 337-344.
24. Mousavizadeh, A., M.R. Mohammadabadi, A. Torabi, M.R. Nassiry, H. Ghiasi and A.K. Esmailizadeh. 2009. Genetic polymorphism at the growth hormone locus in Iranian Talli goats by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). Iranian Journal of Biotechnology, 7(1): 51-53.
25. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70: 3321-3323. [DOI:10.1073/pnas.70.12.3321]
26. Nikoubin Borujeni, M., N. Pirany and F. Rafiei Boroujeni. 2016. Analysis of genetic diversity in Fars native chicken based on partial mitochondrial DNA D-loop region sequences. Research on Animal Production, 7(14): 180-185 (In Persian). [DOI:10.29252/rap.7.14.185]
27. Ramasamy, K.T., M.R. Reddy and S. Murugesan. 2011. Toll-like receptor mRNA expression, iNOS gene polymorphism and serum nitric oxide levels in indigenous chickens. Veterinary Research Communications, 35: 321-327. [DOI:10.1007/s11259-011-9472-z]
28. Shojaei, M., M.R. Mohammadabadi, M. Asadi Fozi, O. Dayani, A. Khezri and M. Akhondi. 2010. Association of growth trait and Leptin gene polymorphism in Kermani sheep. Journal of Cell and Molecular Research, 2: 67-73.
29. Tohidi, R., I.B. Idris, J.M. Panandam and M. Hair-Bejo. 2013. Analysis of genetic variation of inducible nitric oxide synthase and natural resistance-associated macrophage protein 1 loci in Malaysian native chickens. African Journal of Biotechnology, 10: 1285-1289.
30. Tohidi, R., I.B. Idris, J.M. Panandam and M.H. Hair-Bejo. 2012. The effects of polymorphisms in IL-2, IFN-γ, TGF-β2, IgL, TLR-4, MD-2, and iNOS genes on resistance to Salmonella E. in indigenous chickens. Avian Pathology, 41: 605-612. [DOI:10.1080/03079457.2012.739680]
31. Thomas, N. and S. Joseph. 2012. Role of SLC11A1 gene in disease resistance. Biotechnology in Animal Husbandry, 28(1): 99-106. [DOI:10.2298/BAH1201099T]
32. Vanhala, T., M. Tuiskula-Haavisto, K. Elo, J. Vilkki and A. Maki-Tanila. 1998. Evaluation of genetic variability and genetic distances between eight chicken lines using microsatellite markers. Poultry Science, 77: 783-790. [DOI:10.1093/ps/77.6.783]
33. Weir, B.S. 1990. Genetic data analysis: Methods for discrete population genetic data. 1rd edn, Sinauer Assoc., Sunderland, MA, USA, 377 pp.
34. Yeh, F.C., Y. Rongcal and T. Boyle. 2000. POPGENE 1.32: A free program for the analysis of genetic variation among and within populations using co-dominant and dominant markers. Department of Renewable Resources, University of Alberta, Alberta, Canada.
35. Zamani, P., M. Akhondi, M.R. Mohammadabadi, A.A. Saki, A. Ershadi, M.H. Banabazi and A.R. Abdolmohammadi. 2013. Genetic variation of Mehraban sheep using two intersimple sequence repeat (ISSR) markers. African Journal of Biotechnology, 10: 1812-1817.
36. Zandi, E., M.R. Mohammadabadi, M. Ezzatkhah and A.K. Esmailizadeh. 2014. Typing of toxigenic isolates of clostridium perfringens by multiplex PCR in ostrich. Iranian Journal of Applied Animal Science, 4: 509-514.
37. Zanetti, E., C. Dalvit, M. De Marchi, R. Dal Zotto and M. Cassandro. 2007. Genetic characterization of Italian chicken breeds using a panel of twenty microsatellite markers. Poljoprivreda, 13(1): 197-200.
38. Zhou, H. and S.J. Lamont. 2003. Association of six candidate genes with antibody response kinetics in hens. Poultry Science, 82: 1118-1126. [DOI:10.1093/ps/82.7.1118]
39. Zhou, H., A. Buitenhuis, S. Weigend and S. Lamont. 2001. Candidate gene promoter polymorphisms and antibody response kinetics in chickens: interferon-γ, interleukin-2 and immunoglobulin light chain. Poultry Science, 80: 1679-1689. [DOI:10.1093/ps/80.12.1679]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2020 All Rights Reserved | Research On Animal Production(Scientific and Research)

Designed & Developed by : Yektaweb