Volume 8, Issue 15 (6-2017)                   rap 2017, 8(15): 96-104 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2017). Nutritive Value and Performance of Cereal Green Fodder Yield in Hydroponic System . rap. 8(15), 96-104. doi:10.29252/rap.8.15.96
URL: http://rap.sanru.ac.ir/article-1-752-en.html
Abstract:   (4428 Views)

     This study was conducted to assess the nutritive value and performance of green fodder (GF) production in hydroponic system. A mixture of barley (100 kg) and corn (80 kg) seeds was prepared and grown in an automatic controlling growing chamber that contained 7 shelevs, each with 16 special trays capacity. From each shelf, 6 trays were taken out after 7, 8, 9 and 10 days (as treatment) and fresh weight was recorded and sampled. Chemical composition and in vitro digestibility was determined. The performance and cost of GF production were estimated. Results showed that the fresh GF yield was 5.25 times of the original seed nevertheless, dry matter obtained was 23.8% less than the initial spent seed. Crude protein (CP) content of GF was significantly higher than that of barley (P=0.0076) and corn grain (P=0.0071) but such elevation in CP was mainly related to non-protein nitrogen. Organic matter digestibility of GF reduced as compared to the barley (P=0.0079) and corn grain (P=0.0087) and ME content. No differences were obtained among the GF treatments for nutrient contents and digestibility.The estimated cost per kg DM, CP, TP and ME obtained from GF were respectively 3.12, 2.01, 3.12 and 3.11 times of barley and corn grains. Ovreall, not only there is a negative balance of nutrients during converting barley and corn grains to green fodder in hydroponic system, but also the price of nutrients obtained by GF is several times higher than the original grains.

Full-Text [PDF 653 kb]   (30847 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/06/17 | Revised: 2017/08/27 | Accepted: 2017/06/17 | Published: 2017/06/17

1. Al-Ajmi, A.A., I. Salih, I. Kadhim and Y. Othman. 2009. Yield and water use efficiency of barley fodder produced under hydroponic system in GCC countries using tertiary treated sewage effluents. Phytology, 1: 342-348.
2. Al-Karaki, N. Ghazi and N. Al-Momani. 2011. Evaluation of some barley cultivars for green fodder production and water use efficiency under hydroponic conditions. Jordan Journal of Agricultural Sciences, 7: 448-457.
3. AOAC. 1990. Official methods of analysis, 15th Edition. Association of Official Analytical Chemists, Washington, DC, USA.
4. Chavan, J. and S.S. Kadam. 1989. Nutritional improvement of cereals by sprouting. Critical Reviews in Food Science and Nutrition, 28: 401-437. [DOI:10.1080/10408398909527508]
5. Chung, T.Y., E.N. Nwokolo and J.S. Sim. 1989. Compositional and digestibility changes in sprouted barley and canola seeds. Plant Foods in Human Nutrition, 39: 267-278. [DOI:10.1007/BF01091937]
6. Dagnia, S., D. Petterson, R. Bell and F. Flanagan. 1992. Germination alters the chemical composition and protein quality of lupin seed. Journal of the Science, Food and Agriculture, 60: 419-423. [DOI:10.1002/jsfa.2740600403]
7. Dung, D.D., I.R. Godwin and J.V. Nolan. 2010. Nutrient content and in sacco digestibility of barley grain and sprouted barley. Journal of Animal and Veterinary Advances, 9: 2485-2492. [DOI:10.3923/javaa.2010.2485.2492]
8. Fayed, A.M. 2011. Comparative study and feed evaluation of sprouted barley grains on rice straw versus tamarix mannifera on performance of growing barki lambs in sinai. Journal of American Science, 7: 954-961.
9. Fazaeli, H., H.A. Golmohammadi, A.A. Shoayee, N. Montajebi and S.H. Mosharraf. 2011. Performance of feedlot calves fed hydroponics fodder barley. Journal of Agriculture Science and Technology, 13: 367-375.
10. Fazaeli, H., H.A. Golmohammadi, S.N. Tabatabayee and M. Asghari-Tabrizi. 2012. Productivity and nutritive value of barley green fodder yield in hydroponic system. World Applied Science, 16: 531-539.
11. Fazaeli, H. 2014. Efficiency of hydroponic green fodder as animal feed. Animal Science Journal (Pajouhesh & Sazandegi), 103: 205-214 (In Persian).
12. Fox, D.G., T.P. Tylotki, L.O. Tedeschi, M.E. Van Amburgh, L.E. Chase, A.N. Pell, T.R. Overton and J.B. Russel. 2003. The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion: CNCPS, Version 5.0. Department of Animal Science, Cornell University, Ithaca, New York, 294 pp.
13. ‌‌ Greenberg, N.A. and W.P. Shipe. 1979. Comparison of the abilities of trichloroacetic, picric, sulfosalicylic, and tungestic acids to precipitate protein hydrolysates and proteins. Journal of Food Science, 44: 735-737. [DOI:10.1111/j.1365-2621.1979.tb08487.x]
14. Licitra, G., T.M. Hernandez and P.J. Van Soest. 1996. Standadization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science and Technology, 57: 347-358. [DOI:10.1016/0377-8401(95)00837-3]
15. Mansbridge, R.J. and B.J. Gooch. 1985. A nutritional assessment of hydroponically grown barley for ruminants. Animal Production, 4: 569-570.
16. Menke, K.H. and Y.H. Stingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Developments, 28: 7-55.
17. Morgan, J., R.R. Hunter and R.O'. Haire. 1992. Limiting factors in hydroponic barley grass production. Proceeding of the 8th international congress on soil less culture, 241-261 pp. Hunter's Rest, South Africa.
18. NRC. 2001. Nutrient reqirements for dairy cattle. Academy Press, Washington, DC. 360 pp.
19. Nielson, M.T., R.E. Meade, G.M. Paulsen and R.C. Hoseney. 1978. Improvement of wheat protein quality by germination. Proceedings of the 10th national conference on wheat utilization research, 23-39 pp., Tucson, Arizona, USA.
20. Pandey, H.N. and N.N. Pathak. 1991. Nutritional evaluation of artificially grown barley fodder in lactating crossbred cows. Indian Journal of Animal Nutrition, 8: 77-78.
21. Peer, D.J. and S. Leeson. 1985. Feeding value of hydroponically produced barley for poultry and pigs.Animal Feed Science and Technology, 13: 183-190. [DOI:10.1016/0377-8401(85)90021-5]
22. Rasteh, M.R. and B. Dastar. 2015. Determination of chemical composition and metabolisable energy of germinated barley in broiler chickens. Research on Animal Production, 6: 1-8 (In Persian).
23. SAS, Statistical Aanalysis System. 2001. Users Guide, Statistics, version 8.2. SAS Institute, Inc., Carry, NC.
24. Shem, M., F. Lekule, G. Zakayo and B. Eggum. 1990. Nutritive value of germinated and un-germinated high tannin sorghum for growing pig. Acta Agriculture Scandinavica, 40: 253-258. [DOI:10.1080/00015129009438559]
25. Sneath, R. and F. McIntash. 2003. Review of hydroponic fodder production for beef cattle. Department of primary industries. Queenlands Australia. McKeehen. 55 pp.
26. Thomas T.A. 1977. An automated procedure for the determination of soluble carbohydrate in herbage. Journal of Science of Food and Agriculture, 28: 639-642. [DOI:10.1002/jsfa.2740280711]
27. Tranel, L.F. 2013. Hydroponic fodder systems for dairy cattle. Iowa, ISU Extension and Outreach, A.S. Leaflet R2791. at: lib.dr.iastate.edu/ans_air/vol659/iss1/42 [DOI:10.31274/ans_air-180814-606]
28. Trubey, C.R. and Y. Otros. 1969. Effect of light, culture solution and growth period on growth and chemical composition of hydroponically produced oat seedlings. Agronomy, 61: 663-665. [DOI:10.2134/agronj1969.00021962006100050003x]
29. Tudor, G., T. Darcy, P. Smith and F. Shallcross. 2003. The intake and liveweight change of droughmaster steers fed hydroponically grown, young sprouted barley fodder (autpgrass). In: Review of hydroponic fodder production for beef cattle, Project Report. Western Australia. 55 pp.
30. Van Soest, P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74: 3583-3597. [DOI:10.3168/jds.S0022-0302(91)78551-2]
31. Veysi, A., A. Afzalzadeh, H. Fazaeli and H. Baneh. 2015. Determination of chemical composition, digestibility and dry matter and protein degradability parameters of three-days sprouted barley. Research on Animal Production, 6: 115-122 (In Persian).

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb