Volume 8, Issue 16 (11-2017)                   rap 2017, 8(16): 145-151 | Back to browse issues page

XML Persian Abstract Print

Abstract:   (4846 Views)
The reliability and performance of the molecular diagnostic assays such as polymerase chain reaction (PCR), enzyme digestion and other applications are influence by quantity and quality of the extracted DNA strongly. Furthermore, to choose suitable and optimal tissue for genomic experiments nevertheless consider quantity and quality of the extracted DNA, we need to consider the comfort of sample collecting, transporting costs, storing costs, safety of sampling and pre-processing. I this study an efficient salting out-modified procedure for extracting DNA from hair roots, introduced. This procedure yield high quantity of DNA with adequate quality. Four hundred Hair roots and blood samples were obtained from buffalo units experiment. The yield of extracted DNA and the purity of the DNA samples were evaluated by absorbance (A2260/A280) ratio. 1% agar gel electrophoresis and PCR amplification. Mean DNA yields and the 260/280 nm absorbance ratio for buffalo hair roots and blood were 27.67 μg and 1.85 and 17.86 μg and 1.83, respectively. Comparing this results with previous studies demonstrate that our modified procedure is cost-effectiveness, comfortable, safe, efficient and recommendable procedure to carry out in biotechnology laboratories.
Full-Text [PDF 365 kb]   (6193 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/10/30 | Revised: 2017/11/11 | Accepted: 2017/10/30 | Published: 2017/10/30

1. Alberts, C.C., J.T. Ribeiro-Paes, G. Aranda-Selverio, J.R. Cursino-Santos, V.R. Moreno-Cotuli, A.L.D. Oliveir, W.F. Porchia, Santos, Departamento and E.B. Souza. 2010. DNA extraction from hair shafts of wild Brazilian felids and canids. Genetics and Molecular Research, 9: 2429-2435. [DOI:10.4238/vol9-4gmr1027]
2. Bauerova, M., M. Bauer and D. Vasicek. 1999. A simple and inexpensive DNA purification from malignant hyperthermia PCR detection in porcine hair roots. Meat Science, 51: 325-327. [DOI:10.1016/S0309-1740(98)00127-2]
3. Campbell, A.M., J. Williamson, D. Padula and S. Sundby. 1997. Use PCR & single hair to produce a "DNA fingerprint". The American Biology Teacher, 59: 172-178. [DOI:10.2307/4450275]
4. Chaisomchit, S., R. Wichajarn, S. Chowpreecha and W. Chareonsiriwatana. 2003. A simple method for extraction and purification of genomic DNA from dried blood spots on filter paper. Southeast Asian J Trop Med Public Health, 34: 641-645.
5. Graham, E.A.M. 2007. DNA Reviews: hair. Forensic Science, Medicine, and Pathology, 3: 133-137. [DOI:10.1007/s12024-007-9005-9]
6. Grimberg, J., S. Nawoscihik, L. Belluscio, R. McKee, A. Turk and A. Eisenberg. 1989. A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Research, 17: 83-90. [DOI:10.1093/nar/17.20.8390]
7. Heyen, D.W., J.E. Beever, R.E. Evart, C. Green, S.R.E. Bates, J.S. Ziegle and H.A. Lewin. 1997. Exclusion probabilities of 22 bovine microsatellite markers in flurescent multiplexes for semi- automated parentage testing. Animal Genetics, 28: 21-27. [DOI:10.1111/j.1365-2052.1997.t01-1-00057.x]
8. Higuchi, R., C.H. Beroldingen, G.F. Sensabaugh and H.A. Erlich. 1988. DNA typing from single hairs. Nature, 332: 543-546. [DOI:10.1038/332543a0]
9. Huang, X., F.J. Zeller, S.L. Hsam and G. Wenzel. 2000. Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome, 43: 298-305. [DOI:10.1139/gen-43-2-298]
10. King, I.B., J. Satia-Abouta, M.D. Thornquist, J. Bigler, R.E. Patterson and A.R. Kristal. 2002. Buccal cell DNA yield, quality and collection costs: comparison of methods for large-scale studies. Cancer Epidemiology, Biomarkers Preventation, 11: 1130-1133.
11. Kotchoni, S.O. and E.W. Gachomo. 2009. A rapid and hazardous reagent free protocol for genomic DNA extraction suitable for genetic studies in plants. Molecular Biology Reports, 36: 1633-1636. [DOI:10.1007/s11033-008-9362-9]
12. Kumar, P., V. Choudharya, T.K. Bhattacharya, B. Buushan and A. Sharma. 2005. PCR-RFLP based genotyping of cattle using DNA extracted from hair samples. Indian Journal of Biotechnology, 4: 287-289.
13. Lutz, S., H.J. Weisser, J. Heizmann and S. Pollak. 1996. mtDNA as a tool for identification of human remains. International Journal of Legal Medicine, 109: 205-209. [DOI:10.1007/BF01225519]
14. McNevin, D., L. Wilson-Wilde, J. Robertson, J. Kyd and C. Lennard. 2005. Short tandem repeat (STR) genotyping of keratinised hair. Part 1. Review of current status and knowledge gaps. Forensic Science International, 153: 237-246. [DOI:10.1016/j.forsciint.2005.05.006]
15. Michele, K., P.D. Nishiguchi, M. Egan, K. David, P. Aloysius, P. Lorenzo, C. Howard, E.T. Rosenbaum, W. Yael, D. Rob and G. Gonzalo. 2002. DNA Isolation Procedures. Methods and tools in biosciences and medicine. Birkhäuser Verlag Basel/Switzerland, pp: 250-281.
16. Miller, S.A., D.D. Dykes and H.F. Polesky. 1998. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16: 12-15. [DOI:10.1093/nar/16.3.1215]
17. Milne, E., F.M. Bockxmeer, L. Robertson, J.M. Brisbane, L.J. Ashton and R.J. Scott. 2006. Buccal DNA collection: comparison of buccal swabs with FTA cards. Cancer Epidemiology, Biomarkers Preventation, 15: 69-81. [DOI:10.1158/1055-9965.EPI-05-0753]
18. Miyaki, C.Y. 1996. Um Estudo Filogenético de Psitacídeos (Psittaciformes, Aves) Baseado em Seqüências de Genes Mitocondriais. Doctoral thesis, Instituto de Biociências. Universidade de São Paulo, São Paulo, 168 pp.
19. Pfeiffer, I., I. Volkel, H. Taubert and B. Brenig. 2004. Forensic DNA-typing of dog hair: DNA-extraction and PCR amplification. Forensic Science International, 141: 149-151. [DOI:10.1016/j.forsciint.2004.01.016]
20. Roon, D.A., D. Waits, K.C. LandKendall. 2003. A quantitative evaluation of two methods for preserving hair samples. Molecular Ecology Notes, 3: 163-166. [DOI:10.1046/j.1471-8286.2003.00358.x]
21. Salah, M.A.R. and E.H. Elsayed. 2007. Genetic similarity among the three Egyptian water buffalo flocks using RAPD-PCR and PCR-RFLP techniques. Research Journal of Agriculture and Biological Sciences, 3: 351-355.
22. Suenaga, E. and H. Nakamura. 2005. Evaluation of three methods for effective extraction of DNA from human hair. Journal of Chromatography B, 820: 137-141. [DOI:10.1016/j.jchromb.2004.11.028]
23. Suzanne, M., B.S. Leanza, D. Robert, M.D. Burk, E. Thomas and M.D. Rohan. 2007. Whole genome amplification of DNA extracted from hair samples: Potential for use in molecular epidemiologic studies. Cancer Detection and Prevention, 31: 480-488. [DOI:10.1016/j.cdp.2007.10.009]
24. Takayanagi, K., H. Asamura, K. Tsukada, M. Ota, S. Saito and H. Fukushima. 2003. Investigation of DNA extraction from hair shafts. International Congress Series, 1239: 759- 764. [DOI:10.1016/S0531-5131(02)00582-4]
25. Tanigawara, Y., T. Kita, M. Hirono, T. Sakaeda, F. Komada and K. Okumura. 2001. Identification of N-acetyltransferase 2 and CYP2C19 genotypes for hair, buccal cell swabs, or fingernails compared with blood. Therapeutic Drug Monitoring, 23: 341-346. [DOI:10.1097/00007691-200108000-00004]
26. Thi, Hue, H.C. Dieu, P. Tuan, T.L. Thao and D.T. Giang. 2012. Extraction of Human Genomic DNA from Dried Blood Spots and Hair Roots. International Journal of Bioscience, Biochemistry and Bioinformatics, 2: 21-26. [DOI:10.7763/IJBBB.2012.V2.62]
27. Zadworney, D. and U. Kuhnlein. 1990. The identification of the kappa casein genotype in Holstein dairy cattle using polymerase chain reaction. Theoretical Applied Genetics, 80: 631-634. [DOI:10.1007/BF00224222]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.