Volume 9, Issue 19 (6-2018)                   rap 2018, 9(19): 54-62 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

khanahmadi A R, rahimi G, moradi shahre babak H, hafezian H, zandi M B. (2018). Genomic scan for detection of selective sweeps in Turkmen horse population. rap. 9(19), 54-62. doi:10.29252/rap.9.19.54
URL: http://rap.sanru.ac.ir/article-1-623-en.html
Sari Agricultural Science and Natural Resources University
Abstract:   (3836 Views)

Abstract

Selection not only increases the frequency of new-useful mutations but also remains some signals throughout the genome. Since these areas are often control economically important traits, identifying and tracking these areas is the most important issue in the animal genetics. The aim of this study was to detecting signals of selection in the genome of Turkmen horse using 70K SNP chip. Twenty-three Turkmen horses selected from different areas of Gonbad-e kavuos, were Blood sampled. Then DNA extracted genotyped. To detect footprint of signal selection, some tests based on linkage disequilibrium (LD) such as extended haplotype homozygosity(EHH) and integrated haplotype Score (iHS) was used. First to identify regions of the genome that included the most signals of selection, iHS statistics was used and accordingly 6 genomic regions which were in the 99.99% percentile of iHS values selected for further analysis. These regions were located in 6 areas on chromosomes 4,5,7,8,9 and 10. Results of EHH test with bifurcation diagram of haplotype, confirmed signals of selection in these areas. Based on the results of the EHH test, sharp decay of LD in some regions was observed (chromosomes 7, 9 and 10) while in other regions it wasn’t so significant (chromosomes 4,5 and 8). As studied alleles on chromosomes 4,5 and 8 had long range of LD and had frequency of, respectively, %43, %52 and %37, these regions of the genome of Turkmen horse most likely has been the target of positive selection. 

Full-Text [PDF 1173 kb]   (1564 Downloads)    
Type of Study: Research | Subject: ژنتیک و اصلاح نژاد دام
Received: 2016/07/27 | Revised: 2018/06/24 | Accepted: 2017/01/11 | Published: 2018/06/24

References
1. Akey, J.M. 2009. Constructing genomic maps of positive selection in humans. Where do we go from here? Genome Research, 19: 711-722. [DOI:10.1101/gr.086652.108]
2. Biswas, S. and J.M. Akey. 2006. Genomic insights into positive selection. Trends in Genetics, 22: 437-436. [DOI:10.1016/j.tig.2006.06.005]
3. Brookfield, J.F.Y. 2001. Population genetics, The signature of selection. Current Biology, 11: 388-390. [DOI:10.1016/S0960-9822(01)00215-9]
4. Busch-Nentwich, E., R. Kettleborough, C.M. Dooley, C. Scahill, I. Sealy, R. White, C. Herd, S. Mehroke, N. Wali, S. Carruthers, A. Hall, J. Collins, R. Gibbons, Z. Pusztai, R. Clark and D.L. Stemple. 2013. Sanger Institute Zebrafish Mutation Project mutant data submission. ZFIN Direct Data Submission (http://zfin.org).
5. Carlson, C.S., D.J. Thomas, M.A. Eberle, J.E. Swanson, R.J. Livingston, M.J. Rieder and D.A. Nickerson. 2005. Genomic regions exhibiting positive selection identified from dense genotype data. Genome Research, 15: 1553-1565. [DOI:10.1101/gr.4326505]
6. Emmeline, W., H. Beatrice, A. McGivney, G.U. Jingjing, R. Whiston, E. MacHugh. 2010. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. Biomedical centeral, 11: 1471-2164. [DOI:10.1186/1471-2164-11-552]
7. Estrada-Cuzcano, A., K. Neveling, S. Kohl, E. Banin, Y. Rotenstreich, D. Sharon, T.C. Falik-Zaccai, S. Hipp, R. Roepman, B. Wissinger, S.J.F. Letteboer and D.A. Mans. 2012. Mutations in C8orf37, encoding a ciliary protein, are associated with autosomal-recessive retinal dystrophies with early macular involvement. American Journal of Human Genetics, 90: 102-109. [DOI:10.1016/j.ajhg.2011.11.015]
8. Gautier, M. and R. vitalis. 2012. Rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. , 28: 1176-7. [DOI:10.1093/bioinformatics/bts115]
9. Hayes, B., S. Lien, H. Nilsen, H.G. Olsen, P. Berg, S. MacEachern, S. Potter and T.H.E. Meuwissen. 2008. The origin of selection signatures on bovine chromosome six. Animal Genetics, 39: 105-111. [DOI:10.1111/j.1365-2052.2007.01683.x]
10. Hays, B.J., A.J. Chamberlain, S. Maceachern, K. Savin, H. Mcpartlan, I. Macleod, L. Sethuran and M.E. Goddard. 2009. A Genome map of divergent artificial selection between Bos Taurus dairy cattle and Bos Taurus beff cattle. Animal Genetic, 40: 176-184. [DOI:10.1111/j.1365-2052.2008.01815.x]
11. Hudson, R., K. Bailey, D. Skarecky, J. Kwiatowski and F. Ayala. 1994. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics, 136: 1329-1340.
12. Jiang, Q., S. Arnold, T. Heanue, K.P. Kilambi, B. Doan, A. Kapoor, A.Y. Ling, M.X. Sosa, M. Guy, Q. Jiang, G. Burzynski, K. West, S. Bessling, P. Griseri, J. Amiel, R.M. Fernandez, J.B. Verheij, R.M. Hofstra, S. Borrego, S. Lyonnet, I. Ceccherini, J.J. Gray, V. Pachnis, A.S. McCallion and A. Chakravarti. 2015. Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. American Journal of Human Genetics, 96: 581-596. [DOI:10.1016/j.ajhg.2015.02.014]
13. Jingjing, G.U., N. Orr, S.D. Park, L.M. Katz, G. Sulimova, D.E. MacHugh and E.W. Hill. 2009. A genome scan for positive selection in thoroughbred horses. Journals PLoS ONE, 4: 57-67. [DOI:10.1371/journal.pone.0005767]
14. Khalili, M. 1387. Horses and my expertise. Zareh, Tehran, 694 pp (In Persian).
15. Kasarda, R., N. Moravčíková, A. Trakovická, G. Mészáros and K. Ondrej. 2015. Genome-wide selection signatures in Pinzgau cattle, Potravinarstvo, 9: 268-274. [DOI:10.5219/478]
16. Kimura, M. 1983. The neutral theory of molecular evolution and the world view of neutralists. Genome, 24-31. [DOI:10.1139/g89-009]
17. Knöll, R., M. Hoshijima, H.M. Hoffman, V. Person, I. Lorenzen-Schmidt, M.L. Bang, T. Hayashi, N. Shiga, H. Yasukawa, W. Schaper, W. McKenna, M. Yokoyama, N.J. Schork, J.H. Omens, A.D. McCulloch, A. Kimura, C.C. Gregorio, W. Poller, J. Schaper and H.P. Schultheiss. 2002. The Cardiac Mechanical Stretch Sensor Machinery Involves a Z Disc Complex that Is Defective in a Subset of Human Dilated Cardiomyopathy, Cell, 111: 943-955. [DOI:10.1016/S0092-8674(02)01226-6]
18. Matsuda, A., Y. Suzuki, G. Honda, S. Muramatsu, O. Matsuzaki, Y. Nagano, T. Doi, Shimotohno, T. Harada, E. Nishida, H. Hayashi and S. Sugano. 2003. Large-scale identification and characterization of human genes that activate NF- B and MAPK signaling pathways. Oncogene, 22: 3307-3318. [DOI:10.1038/sj.onc.1206406]
19. McCoy, A.M., R. Schaefer, J.L. petersen, P.L. Morrell, M.A. Slamka, J.R. Mickelson, S.J. Valberg and M.E. McCue. 2013. Evidence of positive selection for a glycogen synthase (GYS1) mutation in domestic horse populations. Journal of heredity, 105: 163-172. [DOI:10.1093/jhered/est075]
20. Moradi, M.H., A. Nejati-Javaremi, M. Moradi-Shahrbabak, K.G. Dodds and J.C. McEwan. 1389. Whole-genome scan of population differentiation in Zel and Lori-Bakhtiari sheep breeds. journal of Agricultural biotechnology, 2: 57-70.
21. Mukhopadhyay, D., A. Arnaoutov and M. Dasso. 2010. The SUMO protease SENP6 is essential for inner kinetochore assembly. Journal of Cell Biology, 188: 681-692. [DOI:10.1083/jcb.200909008]
22. Petersen, J.L., S.J. Valberg, J.R. Mickelson and M.E. McCue. 2014. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Animal Genetics, 45: 827-835. [DOI:10.1111/age.12205]
23. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M.A. Ferreira, D. Bender, J. Maller, P. Sklar, P.I. De Bakker and M.J. Daly. 2007. PLINK: a tool set for whole- genome association and population-based linkage analyses. The American Journal of Human Genetics, 81(3): 559-575. [DOI:10.1086/519795]
24. Qanbari, S., D. Gianola, B. Hayes, F. Schenkel, S. Miller, S. Moore, G. Thaller and H. Simianer. 2011. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genomics, 12: 318 pp. [DOI:10.1186/1471-2164-12-318]
25. Qanbari, S., H. Pausch, S. Janse, M. Somel, T.M. Strom, R. Fries, R. Nielsen, H. Simianer. 2014. Classic Selective Sweeps Revealed by Massive Sequencing in Cattle. PLoS Genet,10: 41-48. [DOI:10.1371/journal.pgen.1004148]
26. Sabeti, P., D.E. Reich, J.M. Higgins, H.Z. Levine, D.J. Richter, S.F. Schaffner, S.B. Gabriel, J.V. Platko, N.J. Patterson, G.J. McDonald, H.J. Ackerman, S.J. Campbell, D. Altshuler, R. Cooper, D. Kwiatkowski, R. Ward and E.S. Lander. 2002. Detecting recent positive selection in the human genome from haplotype structure. Nature, 419: 832-837. [DOI:10.1038/nature01140]
27. Sabeti, P., S.F. Schaffner, B. Fry, J. Lohmueller, P. Varilly, O. Shamovsky, A. Palma, T.S. Mikkelsen, D. Altshuler and E.S. Lande. 2006. Positive natural selection in the human lineage. Science, 3129: 1614-1620. [DOI:10.1126/science.1124309]
28. Savage, D.B., C.S. Choi, V.T. Samuel, Z. X Liu, D. Zhang, A. Wang, X.M. Zhang, G.W. Cline, X.X. Yu, J.G. Geisler, S. Bhanot, B.P. Monia and G.I. Shulman. 2006. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. Journal of Clinical Investication, 11: 817-24. [DOI:10.1172/JCI27300]
29. Scheet, P. and M. Stephens. 2006. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. The American Journal of Human Genetics, 78(4): 629-644. [DOI:10.1086/502802]
30. Smith, J.M. and J. Haigh. 1974. The hitch-hiking effect of a favourable gene. Genetical Research, 23: 23-35. [DOI:10.1017/S0016672300014634]
31. Takahashi, K.1., M. Ishida and H. Takahashi. 2009. Expression of Sema3D in subsets of neurons in the developing dorsal root ganglia of the rat. Neuroscience Letter, 455: 17-21. [DOI:10.1016/j.neulet.2009.03.050]
32. Tang, K., K. Thornton and M. Stoneking. 2007. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol, 5: 171 pp. [DOI:10.1371/journal.pbio.0050171]
33. Tashiro, K., T. Tsunematsu, H. Okubo, T. Ohta, E. Sano, E. Yamauchi, H. Taniguchi and H. Konish. 2009. GAREM, a Novel Adaptor Protein for Growth Factor Receptor-bound Protein 2, Contributes to Cellular Transformation through the Activation of Extracellular Signal-regulated Kinase Signaling. JOURNAL OF BIOLOGICAL CHEMISTRY, 284: 20206-20214. [DOI:10.1074/jbc.M109.021139]
34. Teo, Y.Y., A.E. Fry, T.G. Clark, E.S. Tai and M. Seielstad. 2007. On the usage of HWE for identifying genotyping errors. Annals of Hum Genetics, 71: 701-703. [DOI:10.1111/j.1469-1809.2007.00356.x]
35. R Development core team. 2015. Free software environment for statistical computing and graphics. http:// www.r-project.org/.
36. Tian, Y., P. Jackson, C. Gunter, J. Wang, C.O. Rock and S. Jackowski. 2006. Placental Thrombosis and Spontaneous Fetal Death in Mice Deficient in Ethanolamine Kinase 2. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 281: 28438-28449. [DOI:10.1074/jbc.M605861200]
37. Traba, J., A.D. Arco, M.R. Duchen, G. Szabadkai and J. Satrústegui1. 2011. SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca (2+) buffering. Published online. PMC ID:PMC, 33: 79-81. [DOI:10.1038/cdd.2011.139]
38. Venhoranta, H., H. Pausch, K. Flisikowski, C. Wurmser, J. Taponen, H. Rautala, A. Kind, A. Schnieke, R. Fries, H. Lohi and M. Andersson. 2014. In frame exon skipping in BE3B is associated with developmental disorders and increased mortality in cattle. BioMedical engineering Genetics online, 15: 890. [DOI:10.1186/1471-2164-15-890]
39. Voight, B., S. Kudaravalli, X. Wen and J. Pritchard. 2006. A map of recent positive selection in the human genome. PLoS Biol, 4: 72. [DOI:10.1371/journal.pbio.0040072]
40. Wade, C.M., E. Giulotto, S. Sigurdsson, M. Zoli, S. Gnerre, F. Imsland, T.L. Lear, D.L Adelson, E. Bailey, R.R. Bellone, H. Blocker, O. Distl, R.C. Edgar and M. Garber. 2009. Equus caballus isolate Twilight breed thoroughbred chromosome 4 genomic scaffold, EquCab2.0 scaffold_11, whole genome shotgun sequence. NCBI Reference Sequence, 10: 74-86.
41. Wagh, K., A. Bhatia, G. Alexe, A. Reddy, V. Ravikumar, M. Seiler, M. Boemo, M. Yao, M. Cronk, A. Naqvi, S. Ganesan, A.J. Levine, G. Bhan. 2012. Lactase Persistence and Lipid Pathway Selection in the Maasai. PLoS ONE, 7: 44-75. [DOI:10.1371/journal.pone.0044751]
42. Wang, E.T., G.K. Odama, P. Baldi and R. Moyzis. 2006. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proceeding of the National Academy of Sciences of the united State oh America, 103: 135-140. [DOI:10.1073/pnas.0509691102]
43. Zandi, M.B., A. Nejati-Javaremi and A. Pakdel. 2013. Genome-Wide of Genome Structure and signature of selection in Turkmen and Caspian horses. Ph.D. thesis, College of Agriculture, university of Tehran. 135 pp (In Persian).
44. Zou, Y., D. Zwolanek, Y. Izu, S. Gandhy, G. Schreiber, K. Brockmann, M. Devoto, Z. Tian, Y. Hu, G. Veit, M. Meier, J. Stetefeld, D. Hicks, V. Straub, N.C. Voermans, D.E. Birk, E.R. Barton, M. Koch and C.G. Bonnemann. 2014. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Human Molecular Genetics, 23: 2339-52. [DOI:10.1093/hmg/ddt627]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb