1. Alaei Baher, S., Mohammadzadeh, H., Tghizadeh, A., & Hosseinkhani, A. (2017). The effects of bacterial inoculant and prebiotic additive on fermentation characteristics and rumen degradability of corn silage. Reaserches in Animal Science, 27(2), 173-188.
2. NRC (2001). Nutrient requirements of dairy cattle. National Academies Press.
3. AOAC. (2005). Association of Official Analytical Chemist, Official Methods of Analysis. Article 18th Edition.
4. Asdijolodar, A. (2017). Effects of chemical treatments on quality, acid production ability, ruminal degradability, gas production and palatability of corn and tobacco waste silage with urea and oregano supplementation. Master's thesis, Sari University of Agricultural Sciences (In persian).
5. Beck, P., Hutchison, S., Gunter, S., Losi, T., Stewart, C., Capps, P., & Phillips, J. (2007). Chemical composition and in situ dry matter and fiber disappearance of sorghum× Sudangrass hybrids. Journal of animal science, 85(2), 545-555. [
DOI:10.2527/jas.2006-292]
6. Choukan, R. (2011). Genotype, environment and genotype× environment interaction effects on the performance of maize (Zea mays L.) inbred lines. Crop Breeding Journal, 1(2), 97-103.
7. Cone, J., Van Gelder, A., Van Schooten, H., & Groten, J. (2008). Effects of forage maize type and maturity stage on in vitro rumen fermentation characteristics. NJAS-Wageningen Journal of Life Sciences, 55(2), 139-154. [
DOI:10.1016/S1573-5214(08)80033-4]
8. De Boever, J., Aerts, J., Vanacker, J., & De Brabander, D. (2005). Evaluation of the nutritive value of maize silages using a gas production technique. Animal Feed Science and Technology, 123, 255-265. [
DOI:10.1016/j.anifeedsci.2005.04.019]
9. Du, S., Xu, M., & Yao, J. (2016). Relationship between fibre degradation kinetics and chemical composition of forages and by-products in ruminants. Journal of Applied Animal Research, 44(1), 189-193. [
DOI:10.1080/09712119.2015.1031767]
10. FAO. (2014). The state of food and agriculture 2014. Food and Agriculture Organization of the United Nations. https://doi.org/ http://www.fao.org/3/a-i4040e.pdf [
DOI:http://www.fao.org/3/a-i4040e.pdf]
11. Ghanbari, A., Ahmadian, A., Mir.B., & Razmjoo, E. 2010. The effect of harvest time on the quantitative and qualitative characteristics of corn fodder. Journal of Ecophysiology of Agricultural Plants and Weeds, 4(15), 41- 54.
12. Getachew, G., Blümmel, M., Makkar, H., & Becker, K. (1998). In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology, 72(3-4), 261-281. [
DOI:10.1016/S0377-8401(97)00189-2]
13. Getachew, G., Robinson, P., DePeters, E., & Taylor, S. (2004). Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Animal Feed Science and Technology, 111(1-4), 57-71. [
DOI:10.1016/S0377-8401(03)00217-7]
14. Groot, J. C., Cone, J. W., Williams, B. A., Debersaques, F. M., & Lantinga, E. A. (1996). Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology, 64(1), 77-89. [
DOI:10.1016/S0377-8401(96)01012-7]
15. Hatew, B., Bannink, A., Van Laar, H., De Jonge, L., & Dijkstra, J. (2016). Increasing harvest maturity of whole-plant corn silage reduces methane emission of lactating dairy cows. Journal of dairy Science, 99(1), 354-368. [
DOI:10.3168/jds.2015-10047]
16. Hedayatipoor, A., Khorvash, M., GHorbani Gh., Almodaress A., Ebadi M. (2012). Comparison of chemical properties and degradability of fodder and silage of sorghum with corn in in vitro and in situ method. Iranian Journal of Animal Science Research, 4(3), 224-232 (In persian).
17. Hristov, A., Harper, M., Roth, G., Canale, C., Huhtanen, P., Richard, T., & DiMarco, K. (2020). Effects of ensiling time on corn silage neutral detergent fiber degradability and relationship between laboratory fiber analyses and in vivo digestibility. Journal of dairy Science, 103(3), 2333-2346. [
DOI:10.3168/jds.2019-16917]
18. Horst, E. H., & Neumann, M. (2022). Assessing Crop and Corn Silage Profile in Beef Cattle Farms in Southern Brazil: Ten Years' Results. Agriculture, 12(8), 1200. [
DOI:10.3390/agriculture12081200]
19. Hunt, C.W., Kezar, W., & Vinande. R. )1989). Yield, chemical composition and ruminal fermentability of corn whole plant, ear, and stover as affected by maturity. J. Prod. Agri, 2, 357-361. [
DOI:10.2134/jpa1989.0357]
20. Jurjanz, S., & Monteils, V. (2005). Ruminal degradability of corn forages depending on the processing method employed. Animal research, 54(1), 3-15. [
DOI:10.1051/animres:2004041]
21. Kamarloiy, M., & Teimouri Yansari, A. (2008). Effect of microbial inoculants on the nutritive value of corn silage for beef cattle. Pakistan Journal of Biological Sciences, 11(8), 1137-1141. [
DOI:10.3923/pjbs.2008.1137.1141]
22. Kazemi, M. (2020). Comparison of some nutritional and fermentative parameters of silage produced from maize (Zea mays L.) of single cross 704 cultivar during dent Stage. Journal of Plant Ecophysiology, 12(42), 174-185.
23. Khan, N. A., Yu, P., Ali, M., Cone, J. W., & Hendriks, W. H. (2015). Nutritive value of maize silage in relation to dairy cow performance and milk quality. Journal of the Science of Food and Agriculture, 95(2), 238-252. [
DOI:10.1002/jsfa.6703]
24. Macome, F., Pellikaan, W. F., Hendriks, W., Dijkstra, J., Hatew, B., Schonewille, J., & Cone, J. W. (2017). In vitro gas and methane production of silages from whole-plant corn harvested at 4 different stages of maturity and a comparison with in vivo methane production. Journal of dairy Science, 100(11), 8895-8905. [
DOI:10.3168/jds.2017-12953]
25. Makkar, H. P. (2005). In vitro gas methods for evaluation of feeds containing phytochemicals. Animal Feed Science and Technology, 123, 291-302. [
DOI:10.1016/j.anifeedsci.2005.06.003]
26. Menke, K., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. [
DOI:10.1017/S0021859600086305]
27. Menke, K., & Steingass, H. (1988). Estimation of the energy feeding value from gas formation estimated in vitro with rumen fluid and from chemical analysis. 2. Regression equations.
28. Opsi, F., Fortina, R., Borreani, G., Tabacco, E., & López, S. (2013). Influence of cultivar, sowing date and maturity at harvest on yield, digestibility, rumen fermentation kinetics and estimated feeding value of maize silage. The Journal of Agricultural Science, 151(5), 740-753. [
DOI:10.1017/S0021859612000925]
29. Ørskov, E.-R., & McDonald, I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92(2), 499-503. [
DOI:10.1017/S0021859600063048]
30. Peyrat, J., Baumont, R., Le Morvan, A., & Nozière, P. (2016). Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows. Journal of dairy Science, 99(1), 258-268. [
DOI:10.3168/jds.2015-9466]
31. Pinho, R. G. V., Pereira, J. L. d. A. R., Reis, M. C. d., Rezende, A. V. d., & Castro Mata, D. d. (2011). Influence of stage of maturity on bromatological quality of corn forage. Revista Brasileira de Zootecnia, 40, 1894-1901. [
DOI:10.1590/S1516-35982011000900008]
32. Ramirez, R., Haenlein, G., & Nunez-Gonzalez, M. (2001). Seasonal variation of macro and trace mineral contents in 14 browse species that grow in northeastern Mexico. Small Ruminant Research, 39(2), 153-159. [
DOI:10.1016/S0921-4488(00)00184-X]
33. SAS. (2000). Statistical Analysis Systems (SAS). User's Guide.
34. Shadi, H., Y. Rozbahan, J. Rezaei, H. Fazaeli. (2018). Nutritive value of amaranth (var. Maria) silage in comparision with corn silage. Animal Science Journal (pajouhesh and Sazandegi)(121), 303-316 (in persian).
35. Sharifi Hosseini, M., Torbatinejad, N., Teimouri Yansari, A., Hassani, S., Ghoorchi, T., & Tahmasbi, R. (2018). The effects of corn silage particles size and fat supplement on feed intake, digestibility, ruminal function, chewing activity, and performance in mid-lactating Holstein dairy cows. Journal of Livestock Science and Technologies, 6(2), 21-32.
36. Van Soest, P. J. (1994). Nutritional ecology of the ruminant. Cornell university press. [
DOI:10.7591/9781501732355]
37. Van Soest, P. v., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy Science, 74(10), 3583-3597. [
DOI:10.3168/jds.S0022-0302(91)78551-2]
38. Wang, E., Wang, J., Lv, J., Sun, X., Kong, F., Wang, S., Wang, Y., Yang, H., Cao, Z., & Li, S. (2021). Comparison of ruminal degradability, indigestible neutral detergent fiber, and total-tract digestibility of three main crop straws with alfalfa hay and corn silage. Animals, 11(11), 3218. [
DOI:10.3390/ani11113218]
39. Winterholler, S., Lalman, D., Dye, T., McMurphy, C., & Richards, C. (2009). In situ ruminal degradation characteristics of by-product feedstuffs for beef cattle consuming low-quality forage. Journal of animal science, 87(9), 2996-3002. [
DOI:10.2527/jas.2008-1603]
40. Widdicombe, W. D., & Thelen, K. D. (2002). Row width and plant density effects on corn grain production in the northern Corn Belt. Agronomy journal, 94(5), 1020-1023. [
DOI:10.2134/agronj2002.1020]
41. Yousefian, S., Teimouri Yansari, A., & Chashnidel, Y. (2019). The effects of Indigestible Neutral Detergent Fiber (iNDF) of alfalfa hay and corn silage on ruminal degradability of ration fiber in sheep. Iranian Journal of Applied Animal Science, 9(1), 73-78.