1. Abdollahi, M., Rezaei, J., & Fazaeli, H. (2020). Performance, rumen fermentation, blood minerals, leukocyte and antioxidant capacity of young Holstein calves receiving high-surface ZnO instead of common ZnO. Archives of animal nutrition, 74(3), 189-205. [
DOI:10.1080/1745039X.2019.1690389]
2. Adab, M., Mahjoubi, E., Yazdi, M. H., & Collier, R. J. (2020). Effect of supplemental dietary Zinc and its time of inclusion on pre-weaning phase of Holstein heifer calves: Growth performance and health status. Livestock Science, 231, 103891. [
DOI:10.1016/j.livsci.2019.103891]
3. Al-Daraji, H. J., & Amen, M. (2011). Effect of dietary zinc on certain blood traits of broiler breeder chickens. Int J Poult Sci, 10(10), 807-813. [
DOI:10.3923/ijps.2011.807.813]
4. Aliarabi, H., Fadayifar, A., Tabatabaei, M. M., Zamani, P., Bahari, A., Farahavar, A., & Dezfoulian, A. H. (2015). Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs. Biological trace element research, 168, 82-90.
https://doi.org/10.1007/s12011-015-0345-0 [
DOI:10.1007/s12011-015-0345-0.]
5. Alimohamady, R., & Aliarabi, H. (2019). Effects of organic and inorganic sources of zinc on performance and some blood parameters of fattening lambs. Iranian Journal of Animal Science Research, 11(2) (In Persian). [
DOI:10.22067/ijasr.v11i2.68412]
6. Alimohamady, R., Aliarabi, H., Bahari, A., & Dezfoulian, A. H. (2013). Influence of different amounts and sources of selenium supplementation on performance, some blood parameters, and nutrient digestibility in lambs. Biological trace element research, 154, 45-54. [
DOI:10.1007/s12011-013-9698-4]
7. Alimohamady, R., Aliarabi, H., Bruckmaier, R. M., & Christensen, R. G. (2019). Effect of different sources of supplemental zinc on performance, nutrient digestibility, and antioxidant enzyme activities in lambs. Biological trace element research, 189, 75-84. [
DOI:10.1007/s12011-018-1448-1]
8. AOAC. (2000). Association of Official Analytical Chemist (I. W. H. e. O. m. o. a. o. A. International, Ed. 17 ed.). Maryland-Gaithersburg, USA: AOAC International.
9. Arias, V., & Koutsos, E. (2006). Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poultry Science, 85(6), 999-1007.
https://doi.org/10.1093/ps/85.6.999 [
DOI:10.1093/ps/85.6.999.]
10. Attia, A., Awadalla, S., Esmail, E., & Hady, M. (1987). Role of some microelements in nutrition of water buffalo and its relation to production ii-effect of Zinc Supplementation. Assiut Veterinary Medical Journal, 18(35), 91-100. [
DOI:10.21608/avmj.1987.189478]
11. Azizzadeh, M., Mohri, M., & Seifi, H. A. (2005). Effect of oral zinc supplementation on hematology, serum biochemistry, performance, and health in neonatal dairy calves. Comparative Clinical Pathology, 14, 67-71. [
DOI:10.1007/s00580-005-0559-1]
12. Chang, M., Wei, J., Hao, L., Ma, F., Li, H., Zhao, S., & Sun, P. (2020). Effects of different types of zinc supplement on the growth, incidence of diarrhea, immune function, and rectal microbiota of newborn dairy calves. Journal of dairy science, 103(7), 6100-6113.
https://doi.org/10.3168/jds.2019-17610 [
DOI:10.3168/jds.2019-17610.]
13. Cheraghi Mashoof, L., Aliarabi, H., Farahavar, A., Zamani, P., & Alimohamady, R. (2018). The effect of adding zinc and copper to diet of late-pregnant ewes on blood and milk minerals profile, lambs growth performance and some blood parameters. Iranian Journal of Animal Science, 49(2), 267-284. [
DOI:10.22059/ijas.2018.250904.653610. (In Persian).]
14. Council, N. R. (2001). Nutrient requirements of dairy cattle: 2001. National Academies Press.
15. Daghash, H., & Mousa, S. (1999). Zinc sulfate supplementation to ruminant rations and its effects on digestibility in lambs; growth, rectal temperature and some blood constituents in buffalo calves under heat stress. Assiut Veterinary Medical Journal, 40(80), 128-146. [
DOI:10.21608/avmj.1999.182331]
16. Fadayifar, A., Aliarabi, H., Tabatabaei, M. M., Zamani, P., Bahari, A., Malecki, M., & Dezfoulian, A. H. (2012). Improvement in lamb performance on barley based diet supplemented with zinc. Livestock science, 144(3), 285-289.
12.002 [
DOI:10.1016/j.livsci.2011.]
17. Feldmann, H. R., Williams, D. R., Champagne, J. D., Lehenbauer, T. W., & Aly, S. S. (2019). Effectiveness of zinc supplementation on diarrhea and average daily gain in pre-weaned dairy calves: A double-blind, block-randomized, placebo-controlled clinical trial. PLoS One, 14(7), e0219321.
https://doi.org/10.1371/journal.pone.0219321 [
DOI:10.1371/journal.pone.0219321.]
18. Hill, C. H., & Matrone, G. (1970). Chemical parameters in the study of in vivo and in vitro interactions of transition elements. Fed Proc,
19. Kaneko, J. J., Harvey, J. W., & Bruss, M. L. (2008). Clinical biochemistry of domestic animals. Academic press.
20. Kumar, N., Verma, R. P., Singh, L. P., Varshney, V. P., & Dass, R. S. (2006). Effect of different levels and sources of zinc supplementation on quantitative and qualitative semen attributes and serum testosterone level in crossbred cattle (Bos indicus $bftimes $ Bos taurus) bulls. Reproduction Nutrition Development, 46(6), 663-675. [
DOI:10.1051/rnd:2006041]
21. Mallaki, M., Norouzian, M. A., & Khadem, A. A. (2015). Effect of organic zinc supplementation on growth, nutrient utilization, and plasma zinc status in lambs. Turkish Journal of Veterinary & Animal Sciences, 39(1), 75-80. [
DOI:10.3906/vet-1405-79]
22. Mandal, G., Dass, R., Isore, D., Garg, A., & Ram, G. (2007). Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus× Bos taurus) bulls. Animal Feed Science and Technology, 138(1), 1-12.
https://doi.org/10.1016/j.anifeedsci.2006.09.014 [
DOI:10.1016/j.anifeedsci. 2006.09.014]
23. Mohanta, R. K., & Garg, A. K. (2014). Organic trace minerals: immunity, health, production and reproduction in farm animals. Indian Journal of Animal Nutrition, 31(3), 203-212.
24. National Academies of Sciences, E., & Medicine. (2021). Nutrient requirements of dairy cattle.
25. Ramulu, S. P., Nagalakshmi, D., & Kumar, M. K. (2015). Effect of zinc supplementation on haematology and serum biochemical constituents in Murrah buffalo calves. Indian Journal of Animal Research, 49(4), 482-486.
https://doi.org/10.5958/0976-0555.2015.00095.3 [
DOI:10.5958/0976-0555.2015.00095.3.]
26. Ranasinghe, P., Wathurapatha, W., Ishara, M., Jayawardana, R., Galappatthy, P., Katulanda, P., & Constantine, G. (2015). Effects of zinc supplementation on serum lipids: a systematic review and meta-analysis. Nutrition & Metabolism, 12(1), 1-16. [
DOI:10.1186/s12986-015-0023-4]
27. Rojas, L., McDowell, L., Cousins, R., Martin, F., Wilkinson, N., Johnson, A. B., & Velasquez, J. (1995). Relative bioavailability of two organic and two inorganic zinc sources fed to sheep. Journal of Animal Science, 73(4), 1202-1207.
https://doi.org/10.2527/1995.7341202x [
DOI:10.2527/1995.7341202x.]
28. Salama, A. A., Caja, G., Albanell, E., Such, X., Casals, R., & Plaixats, J. (2003). Effects of dietary supplements of zinc-methionine on milk production, udder health and zinc metabolism in dairy goats. Journal of Dairy Research, 70(1), 9-17. https://doi.org/ 10.1017/S0022029902005708 [
DOI:10.1017/S0022029902005708]
29. Shaeffer, G., Lloyd, K., & Spears, J. (2017). Bioavailability of zinc hydroxychloride relative to zinc sulfate in growing cattle fed a corn-cottonseed hull-based diet. Animal Feed Science and Technology, 232, 1-5.
https://doi.org/10.1016/j.anifeedsci.2017.07.013 [
DOI:10.1016/j.anifeedsci.2017.07.013.]
30. Sidhu, P., Garg, M., & Dhawan, D. (2004). Protective effects of zinc on oxidative stress enzymes in liver of protein deficient rats. Nutr Hosp, 19(6), 341-347. [
DOI:10.1081/DCT-52551]
31. Spears, J., Kegley, E., & Mullis, L. (2004). Bioavailability of copper from tribasic copper chloride and copper sulfate in growing cattle. Animal Feed Science and Technology, 116(1-2), 1-13.
https://doi.org/10.2527/jas1989.673835x [
DOI:10.2527/jas1989.673835x.]
32. Spears, J. W. (2003). Trace mineral bioavailability in ruminants. The Journal of nutrition, 133(5), 1506S-1509S. [
DOI:10.2527/jas1989.673835x]
33. Van Soest, P. v., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science, 74(10), 3583-3597.
https://doi.org/10.3168/jds.S0022-0302(91)78551-2 [
DOI:10.3168/jds.S0022-0302(91)78551-2.]
34. Wang, C., Xu, Y., Han, L., Liu, Q., Guo, G., Huo, W., Zhang, J., Chen, L., Zhang, Y., & Pei, C. (2021). Effects of zinc sulfate and coated zinc sulfate on lactation performance, nutrient digestion and rumen fermentation in Holstein dairy cows. Livestock Science, 251, 104673. [
DOI:10.1016/j.livsci.2021.104673]
35. Wang, K.-K., Cui, H.-W., Sun, J.-Y., Qian, L.-C., & Weng, X. (2012). Effects of zinc on growth performance and biochemical parameters of piglets. Turkish Journal of Veterinary & Animal Sciences, 36(5), 519-526.
https://doi.org/10.3906/vet-1010-553 [
DOI:10.3906/vet-1010-553.]
36. Wei, J., Ma, F., Hao, L., Shan, Q., & Sun, P. (2019). Effect of differing amounts of zinc oxide supplementation on the antioxidant status and zinc metabolism in newborn dairy calves. Livestock Science, 230, 103819. [
DOI:10.1016/j.livsci.2019.103819]
37. Westterma, L., & Constabel, F. (1982). Plant tissue culture metbods 2deev. Sasatoon: National Research Council of Canada, Prairie Regional Laboratory. [
DOI:10.1201/9781315120065]
38. Wu, G. (2017). Principles of animal nutrition. crc Press. [
DOI:10.1201/9781315120065]
39. Wu, Y., Sun, Z., Che, S., & Chang, H. (2004). Effects of zinc and selenium on the disorders of blood glucose and lipid metabolism and its molecular mechanism in diabetic rats. Wei Sheng yan jiu= Journal of Hygiene Research, 33(1), 70-73.
40. Zaboli, K., Aliarabi, H., Bahari, A. A., & Abbas, A. K. R. (2013). Role of dietary nano-zinc oxide on growth performance and blood levels of mineral: A study on in Iranian Angora (Markhoz) goat kids.
41. Zaboli, K., & Elyasi, M. J. (2021). Effects of different amounts of zinc on performance and some blood and ruminal parameters in Holstein suckling calves. Journal of Ruminant Research, 9(3), 93-106. [
DOI:10.22069/ejrr.2021.19197.1794]
42. Zhang, B., Shao, Y., Liu, D., Yin, P., Guo, Y., & Yuan, J. (2012). Zinc prevents Salmonella enterica serovar Typhimurium-induced loss of intestinal mucosal barrier function in broiler chickens. Avian Pathology, 41(4), 361-367.
https://doi.org/10.1080/03079457.2012.692155 [
DOI:10.1080/03079457.2012.692155.]