1. Abad, C., & Tan, Y.-V. (2018). Immunomodulatory roles of PACAP and VIP: lessons from knockout mice. Journal of Molecular Neuroscience, 66, 102-113. [
DOI:10.1007/s12031-018-1150-y]
2. Audet, G. N., Quinn, C. M., & Leon, L. R. (2015). Point-of-care cardiac troponin test accurately predicts heat stroke severity in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 309(10), R1264-R1272. [
DOI:10.1152/ajpregu.00286.2015]
3. Barefield, D., & Sadayappan, S. (2010). Phosphorylation and function of cardiac myosin binding protein-C in health and disease. Journal of Molecular and Cellular Cardiology, 48(5), 866-875. [
DOI:10.1016/j.yjmcc.2009.11.014]
4. Bertero, E., & Maack, C. (2018). Metabolic remodelling in heart failure. Nature Reviews Cardiology, 15(8), 457-470. [
DOI:10.1038/s41569-018-0044-6]
5. Chen, C. Y., Lin, H. Y., Chen, Y. W., Ko, Y. J., Liu, Y. J., Chen, Y. H., Walzem, R. L., & Chen, S. E. (2017). Obesity-associated cardiac pathogenesis in broiler breeder hens: Pathological adaption of cardiac hypertrophy1,2. Poultry science, 96(7), 2428-2437. [
DOI:10.3382/ps/pex015]
6. Chen, Y., Jiang, W., Liu, X., Du, Y., Liu, L., Ordovas, J. M., Lai, C.-Q., & Shen, L. (2020). Curcumin supplementation improves heat-stress-induced cardiac injury of mice: physiological and molecular mechanisms. The Journal of Nutritional Biochemistry, 78, 108331. [
DOI:10.1016/j.jnutbio.2019.108331]
7. Derbala, M. H., Guo, A. S., Mohler, P. J., & Smith, S. A. (2018). The role of βII spectrin in cardiac health and disease. Life Sciences, 192, 278-285. [
DOI:10.1016/j.lfs.2017.11.009]
8. Elyasi Zarringhabaie1, G., Sadeghi, M., & Miraie Ashtiani, S. R. (2023). Comparison of some Alignment Software in the Analysis of Dairy Cows RNA-Seq Data. Research on Animal Production, 14(39), 131-138. (In Persian). [
DOI:10.61186/rap.14.39.131]
9. England, J., Pang, K. L., Parnall, M., Haig, M. I., & Loughna, S. (2016). Cardiac troponin T is necessary for normal development in the embryonic chick heart. Journal of Anatomy, 229(3), 436-449. [
DOI:10.1111/joa.12486]
10. Gholipour, M., Vahedi, V., Hajighahramani, S., & Ansari Pirsarei, Z. (2020). The Effect of Bitter Orange Blossom Powder on Growth Performance, Carcass Characteristics and Some Blood Parameters of Broiler Chickens Under Heat Stress Condition. Research on Animal Production, 11(30), 74-82.
https://doi.org/10.52547/rap.11.30.74 [
DOI:10.52547/rap.11.30.74 .(In Persian).]
11. Hausfater, P., Doumenc, B., Chopin, S., Le Manach, Y., Santin, A., Dautheville, S., Patzak, A., Hericord, P., Mégarbane, B., & Andronikof, M. (2010). Elevation of cardiac troponin I during non-exertional heat-related illnesses in the context of a heatwave. Critical care, 14(3), 1-9. [
DOI:10.1186/cc9034]
12. Ivanov, S. V., Ward, J. M., Tessarollo, L., McAreavey, D., Sachdev, V., Fananapazir, L., Banks, M. K., Morris, N., Djurickovic, D., Devor-Henneman, D. E., Wei, M.-H., Alvord, G. W., Gao, B., Richardson, J. A., Minna, J. D., Rogawski, M. A., & Lerman, M. I. (2004). Cerebellar Ataxia, Seizures, Premature Death, and Cardiac Abnormalities in Mice with Targeted Disruption of the Cacna2d2 Gene. The American Journal of Pathology, 165(3), 1007-1018. doi: [
DOI:10.1016/S0002-9440(10)63362-7]
13. Jagatheesan, G., Rajan, S., & Wieczorek, D. F. (2010). Investigations into tropomyosin function using mouse models. Journal of Molecular and Cellular Cardiology, 48(5), 893-898. [
DOI:10.1016/j.yjmcc.2009.10.003]
14. Kolwicz Jr, S. C., Olson, D. P., Marney, L. C., Garcia-Menendez, L., Synovec, R. E., & Tian, R. (2012). Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circulation Research, 111(6), 728-738. [
DOI:10.1161/CIRCRESAHA.112.268128]
15. Kwon, H. K., Jeong, H., Hwang, D., & Park, Z.-Y. (2018). Comparative proteomic analysis of mouse models of pathological and physiological cardiac hypertrophy, with selection of biomarkers of pathological hypertrophy by integrative proteogenomics. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1866(10), 1043-1054. [
DOI:10.1016/j.bbapap.2018.07.006]
16. Laitano, O., Murray, K. O., & Leon, L. R. (2020). Overlapping mechanisms of exertional heat stroke and malignant hyperthermia: evidence vs. conjecture. Sports Medicine, 50(9), 1581-1592. [
DOI:10.1007/s40279-020-01318-4]
17. Lanner, J. T. (2012). Ryanodine receptor physiology and its role in disease. Calcium Signaling, 217-234. [
DOI:10.1007/978-94-007-2888-2_9]
18. Lehnart, S. E., Mongillo, M., Bellinger, A., Lindegger, N., Chen, B.-X., Hsueh, W., Reiken, S., Wronska, A., Drew, L. J., & Ward, C. W. (2008). Leaky Ca 2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. The Journal of clinical investigation, 118(6), 2230-2245. [
DOI:10.1172/JCI35346]
19. Liebetrau, C., Gaede, L., Dörr, O., Hoffmann, J., Wolter, J. S., Weber, M., Rolf, A., Hamm, C. W., Nef, H. M., & Möllmann, H. (2015). High-sensitivity cardiac troponin T and copeptin assays to improve diagnostic accuracy of exercise stress test in patients with suspected coronary artery disease. European Journal of Preventive Cardiology, 22(6), 684-692. [
DOI:10.1177/2047487314529691]
20. Liu, X., Betzenhauser, Matthew J., Reiken, S., Meli, Albano C., Xie, W., Chen, B.-X., Arancio, O., & Marks, Andrew R. (2012). Role of Leaky Neuronal Ryanodine Receptors in Stress- Induced Cognitive Dysfunction. Cell, 150(5), 1055-1067. [
DOI:10.1016/j.cell.2012.06.052]
21. Lopez, J. R., Kaura, V., Diggle, C. P., Hopkins, P. M., & Allen, P. D. (2018). Malignant hyperthermia, environmental heat stress, and intracellular calcium dysregulation in a mouse model expressing the p.G2435R variant of RYR1. British Journal of Anaesthesia, 121(4), 953-961. [
DOI:10.1016/j.bja.2018.07.008]
22. Lu, Q.-W., Wu, X.-Y., & Morimoto, S. (2013). Inherited cardiomyopathies caused by troponin mutations. Journal of geriatric cardiology, 10(1), 91.
23. MacLennan, D. H., & Kranias, E. G. (2003). Phospholamban: a crucial regulator of cardiac contractility. Nature reviews Molecular cell biology, 4(7), 566-577. [
DOI:10.1038/nrm1151]
24. Maier, L. S., & Bers, D. M. (2007). Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovascular Research, 73(4), 631-640. [
DOI:10.1016/j.cardiores.2006.11.005]
25. Nassal, D., Gratz, D., & Hund, T. J. (2020). Challenges and opportunities for therapeutic targeting of calmodulin kinase II in heart. Frontiers in pharmacology, 11, 35. [
DOI:10.3389/fphar.2020.00035]
26. Nassal, D., Yu, J., Min, D., Lane, C., Shaheen, R., Gratz, D., & Hund, T. J. (2021). Regulation of cardiac conduction and arrhythmias by ankyrin/spectrin-based macromolecular complexes. Journal of Cardiovascular Development and Disease, 8(5), 48. [
DOI:10.3390/jcdd8050048]
27. Nie, J., Close, G., George, K. P., Tong, T. K., & Shi, Q. (2010). Temporal association of elevations in serum cardiac troponin T and myocardial oxidative stress after prolonged exercise in rats. European journal of applied physiology, 110(6), 1299-1303. [
DOI:10.1007/s00421-010-1604-6]
28. Nijdam, E., Zailan, A., Van Eck, J., Decuypere, E., & Stegeman, J. (2006). Pathological features in dead on arrival broilers with special reference to heart disorders. Poultry Science, 85(7), 1303-1308. [
DOI:10.1093/ps/85.7.1303]
29. Nilipour, Y., Nafissi, S., Tjust, A. E., Ravenscroft, G., Hossein Nejad Nedai, H., Taylor, R. L., Varasteh, V., Pedrosa Domellöf, F., Zangi, M., & Tonekaboni, S. H. (2018). Ryanodine receptor type 3 (RYR 3) as a novel gene associated with a myopathy with nemaline bodies. European journal of neurology, 25(6), 841-847. [
DOI:10.1111/ene.13607]
30. Punetha, J., Karaca, E., Gezdirici, A., Lamont, R. E., Pehlivan, D., Marafi, D., Appendino, J. P., Hunter, J. V., Akdemir, Z. C., & Fatih, J. M. (2019). Biallelic CACNA2D2 variants in epileptic encephalopathy and cerebellar atrophy. Annals of clinical and translational neurology, 6(8), 1395-1406. [
DOI:10.1002/acn3.50824]
31. Shave, R., Baggish, A., George, K., Wood, M., Scharhag, J., Whyte, G., Gaze, D., & Thompson, P. D. (2010). Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. Journal of the American College of Cardiology, 56(3), 169-176. [
DOI:10.1016/j.jacc.2010.03.037]
32. Singh, R. R., Slater, R. E., Wang, J., Wang, C., Guo, Q., Motani, A. S., Hartman, J. J., Sadayappan, S., & Ason, B. L. (2022). Distinct Mechanisms for Increased Cardiac Contraction Through Selective Alteration of Either Myosin or Troponin Activity. JACC: Basic to Translational Science, 7(10), 1021-1037. [
DOI:10.1016/j.jacbts.2022.04.013]
33. Stallings, J. D., Ippolito, D. L., Rakesh, V., Baer, C. E., Dennis, W. E., Helwig, B. G., Jackson, D. A., Leon, L. R., Lewis, J. A., & Reifman, J. (2014). Patterns of gene expression associated with recovery and injury in heat-stressed rats. BMC genomics, 15(1), 1-19. [
DOI:10.1186/1471-2164-15-1058]
34. Strasburg, G. M., & Chiang, W. (2009). Pale, soft, exudative turkey-The role of ryanodine receptor variation in meat quality1. Poultry Science, 88(7), 1497-1505. [
DOI:10.3382/ps.2009-00181]
35. Tedoldi, A., Ludwig, P., Fulgenzi, G., Takeshima, H., Pedarzani, P., & Stocker, M. (2020). Calcium-induced calcium release and type 3 ryanodine receptors modulate the slow afterhyperpolarising current, sIAHP, and its potentiation in hippocampal pyramidal neurons. PLoS One, 15(6), e0230465. [
DOI:10.1371/journal.pone.0230465]
36. van der Werf, C., Kannankeril, P. J., Sacher, F., Krahn, A. D., Viskin, S., Leenhardt, A., Shimizu, W., Sumitomo, N., Fish, F. A., & Bhuiyan, Z. A. (2011). Flecainide therapy reduces exercise-induced ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Journal of the American College of Cardiology, 57(22), 2244-2254. [
DOI:10.1016/j.jacc.2011.01.026]
37. Vicente, M., Salgado-Almario, J., Valiente-Gabioud, A. A., Collins, M. M., Vincent, P., Domingo, B., & Llopis, J. (2022). Early calcium and cardiac contraction defects in a model of phospholamban R9C mutation in zebrafish. Journal of Molecular and Cellular Cardiology, 173, 127-140. [
DOI:10.1016/j.yjmcc.2022.10.005]
38. Wang, J., Thurston, H., Essandoh, E., Otoo, M., Han, M., Rajan, A., Dube, S., Zajdel, R. W., Sanger, J. M., & Linask, K. K. (2008). Tropomyosin expression and dynamics in developing avian embryonic muscles. Cell Motility and the Cytoskeleton, 65(5), 379-392. [
DOI:10.1002/cm.20267]
39. Xi, D. T. P. B. R. C. K. L. (2001). Whole body hyperthermia and preconditioning of the heart: basic concepts, complexity, and potential mechanisms. International Journal of Hyperthermia, 17(5), 439-455. doi:10.1080/02656730110064342 [
DOI:10.1080/02656730110064342]
40. Xu, J., Yin, B., Huang, B., Tang, S., Zhang, X., Sun, J., & Bao, E. (2019). Co-enzyme Q10 protects chicken hearts from in vivo heat stress via inducing HSF1 binding activity and Hsp70 expression. Poultry Science, 98(2), 1002-1011. [
DOI:10.3382/ps/pey498]
41. Yeh, H.-h., Chang, Y.-M., Chang, Y.-W., Lu, M.-Y. J., Chen, Y.-H., Lee, C.-C., & Chen, C.-C. (2022). Multiomic analyses reveal enriched glycolytic processes in β-myosin heavy chain-expressed cardiomyocytes in early cardiac hypertrophy. Journal of Molecular and Cellular Cardiology Plus, 1, 100011. [
DOI:10.1016/j.jmccpl.2022.100011]
42. Yu, J., Liu, X., Wang, K., Wang, H., Han, Y., Kang, J., Deng, R., Zhou, H., & Duan, Z. (2023). Underlying mechanism of Qiling Jiaogulan Powder in the treatment of broiler ascites syndrome. Poultry Science, 102(1), 102144. [
DOI:10.1016/j.psj.2022.102144]
43. Zhang, J., Schmidt, C. J., & Lamont, S. J. (2017). Transcriptome analysis reveals potential mechanisms underlying differential heart development in fast-and slow-growing broilers under heat stress. BMC genomics, 18(1), 1-15. [
DOI:10.1186/s12864-017-3675-9]
44. Zhang, X., Chen, B., Wu, J., Sha, J., Yang, B., Zhu, J., Sun, J., Hartung, J., & Bao, E. (2020). Aspirin Enhances the Protection of Hsp90 from Heat-Stressed Injury in Cardiac Microvascular Endothelial Cells Through PI3K-Akt and PKM2 Pathways. Cells, 9(1), 243. [
DOI:10.3390/cells9010243]
45. Zhang, Y., Zhao, H., Liu, B., Li, L., Zhang, L., Bao, M., Ji, X., He, X., Yi, J., & Chen, P. (2020). Low level antibodies against alpha-tropomyosin are associated with increased risk of coronary heart disease. Frontiers in Pharmacology, 11, 195. [
DOI:10.3389/fphar.2020.00195]