1. Abbasi, A., Hashemi, R., Hassani, S., & Ebrahimi, M. (2021) Growth Response and Humoral Immunity of Broiler Chickens Fed Organic Acids and Zeolite Coated with Silver Nanoparticles under Heat Stress Conditions. Research on Animal Production,12 (33) ,113-123. (In Persian).
https://doi.org/10.52547/rap.12.33.113 [
DOI:10.52547/rap.12.33.113.]
2. Agapito, G., Milano, M., & Cannataro, M. (2022). A statistical network pre-processing method to improve relevance and significance of gene lists in microarray gene expression studies. BMC bioinformatics, 23(6), 1-20. [
DOI:10.1186/s12859-022-04936-z]
3. Bao, J. W., Qiang, J. Y., Tao, F., Li, H. X., He, J., Xu, P. & Chen, D. J. (2018). Responses of blood biochemistry, fatty acid composition and expression and microRNAs to heat stress in genetically improved farmed tilapia (Oreochromis niloticus), Journal of thermal biology, 73, 91-93.
https://doi.org/10.1016/j.jtherbio.2018.02.007 [
DOI:10.1016/j.jtherbio.2018.02.007.]
4. Birey, F., Kloc, M., Chavali, M., Hussein, I., Wilson, M., Christoffel, D. J. & Aguirre, A. (2015). Genetic and stress-induced loss of NG2 glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2, Neuron, 88(5), 941-956. [
DOI:10.1016/j.neuron.2015.10.046]
5. Chen, Z., Xie, J., Wang, B., & Tang, J. (2014). Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken. Poultry Science, 93(10), 2490-2500.
https://doi.org/10.3382/ps.2013-03398 [
DOI:10.3382/ps.2013-03398.]
6. Cheng, C. Y., W. Tu, L. S., Wang, H. P., Tang, C., Chen, C. F., Chen, H. H., &. Huang, S. Y. (2015). Annotation of differential gene expression in small yellow follicles of a broiler-type strain of Taiwan country chickens in response to acute heat stress. PloS one, 10(11), e0143418.
https://doi.org/10.1371/journal.pone.0143418 [
DOI:10.1371/journal.pone.0143418.]
7. Cheruiyot, E. K., Haile-Mariam, M. B., Cocks, G. I., MacLeod, M., Xiang, R., & Pryce, J. E. (2021). New loci and neuronal pathways for resilience to heat stress in cattle. Scientific reports, 11(1), 1-16. [
DOI:10.1038/s41598-021-95816-8]
8. Doncheva, N. T., Morris, J. H., Gorodkin, J., & Jensen, L. J. (2018). Cytoscape StringApp: network analysis and visualization of proteomics data. Journal of proteome research, 18(2), 623-632. 10.1021/acs.jproteome.8b00702. [
DOI:10.1021/acs.jproteome.8b00702]
9. Garcia, R., Merino, D. J., Gómez, M. J., Nistal, F. M., Hurlé, A. A., Cortajarena, L., & Villar, A. V. (2016). Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cellular Signalling, 28(10), 1563-1579.
https://doi.org/10.1016/j.cellsig.2016.07.003 [
DOI:10.1016/j.cellsig.2016.07.003.]
10. Hao, Y., Liu, J.R., Zhang, Y., Yang, P. G., Feng, Y. J., Cui, Y. J., & Gu, X. H. (2016). The micro RNA expression profile in porcine skeletal muscle is changed by constant heat stress. Animal genetics, 47(3), 365-369.
https://doi.org/10.1111/age.12419 [
DOI:10.1111/age.12419.]
11. He, X., Lu, Z. B., Ma, L., Zhang, J., Li, Y., Jiang, & Gao, F. (2019). Chronic heat stress alters hypothalamus integrity, the serum indexes and attenuates expressions of hypothalamic appetite genes in broilers. Journal of thermal biology, 81, 110-117.
https://doi.org/10.1016/j.jtherbio.2019.02.025 [
DOI:10.1016/j.jtherbio.2019.02.025.]
12. Huang, Z., Ma, A., Yang, X., Liu, T., Zhao, J., Zhang, L., & Xu, R. (2020). Transcriptome analysis and weighted gene co-expression network reveals potential genes responses to heat stress in turbot Scophthalmus maximus. Comparative Biochemistry and Physiology Part D, Genomics and Proteomics, 33, 100632.
https://doi.org/10.1016/j.cbd.2019.100632 [
DOI:10.1016/j.cbd.2019.100632.]
13. Jiang, X., Maruyama, H., Iwasa, K., Arimoto-Matsuzaki, H., Nishina, J., & Hata, Y. (2021). Heat shock induces the nuclear accumulation of YAP1 via SRC. Experimental Cell Research, 399(1), 112439.
https://doi.org/10.1016/j.yexcr.2020.112439 [
DOI:10.1016/j.yexcr.2020.112439.]
14. Khodaei, M., Ghasemi H.A., & Salehizadeh, A. (2022). Effect of Different Levels of a Blended Supplement Including Probiotics, Prebiotics and Enzymes on Productive Performance, Blood Metabolites, Hormonal Profile and Antioxidant Status of Laying Hens. research on Animal Production, 13(38), 128-137. (in Persian). https://doi.org/ 10.52547/rap.13.38.128.
https://doi.org/10.52547/rap.13.38.128 [
DOI:10.52547/rap.13.38.128.]
15. Larkindale, J., & Knight, M. R. (2002). Protection against heat stress induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant physiology, 128(2), 682-695.
https://doi.org/10.1104/pp.010320 [
DOI:10.1104/pp.010320. (In Persian).]
16. Li, M., Li, D., Tang, Y., Wu, F., & Wang, J. (2017). CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. International journal of molecular sciences, 18(9), 1880. 10.3390/ijms18091880. [
DOI:10.3390/ijms18091880]
17. Lucio, A., Alves, K. A., Alves, M. C., Martins, L. S., Braga, L., Miglio, L., & Beletti, M. E. (2016). Selected sperm traits are simultaneously altered after scrotal heat stress and play specific roles in in vitro fertilization and embryonic development. Theriogenology, 86(4), 924-933.
https://doi.org/10.1016/j.theriogenology.2016.03.015 [
DOI:10.1016/j.theriogenology.2016.03.015.]
18. Mehmood, K., Zhang, K., Li, L., Wang, M. U., Rehman, F., Nabi, H., & Li, J. (2018). Effect of tetramethylpyrazine on tibial dyschondroplasia incidence, tibial angiogenesis, performance and characteristics via HIF-1α/VEGF signaling pathway in chickens. Scientific reports, 8(1), 1-10.
https://doi.org/10.1038/s41598-018-20562-3 [
DOI:10.1038/s41598-018-20562-3.]
19. Merya, J., Mohit, A., Hasanzadeh, M., & Shahbazee, B. (2015). Effect of tryptophan, melatonin and dark diet on performance and blood parameters of broilers under heat stress. Research on Animal Production, 6(12), 70-78. (In Persian).
20. Mitchell, J. B., Dugas, B. K., Mcfarlin, J., & Nelson, M. J. (2002). Effects of exercise, heat stress. And hydration on immune cell number and function. Medicine and Science in sports and exercise, 34(12), 1941-1950. https://doi.org/ 10.1249/01.MSS.0000039070.40418.90.
https://doi.org/10.1097/00005768-200212000-00013 [
DOI:10.1249/01.MSS.0000039070.40418.90.]
21. Mohammadabadi M. R., Kheyrodin, H., & Latifi Babenko, A. (2022). mRNA expression profile of DNAH1 gene in testis tissue of Raini Cashmere goat. Agricultural Biotechnology Journal, 14 (3), 243-256. (in Persian) [
DOI:10.22103/jab.2022.20199.1428.]
22. Nakai, A., & Ishikawa, T. (2001). Cell cycle transition under stress conditions controlled by vertebrate heat shock factors. The EMBO Journal, 20(11), 2885-2895.
https://doi.org/10.1093/emboj/20.11.2885 [
DOI:10.1093/emboj/20.11.2885.]
23. Naseer, Z., Ahmad, E., Epikmen, U., Uçan, M., & Akosy, M. (2017). Quercetin supplemented diet improves follicular development, oocyte quality, and reduces ovarian apoptosis in rabbits during summer heat stress. Theriogenology, 96, 136-141.
https://doi.org/10.1016/j.theriogenology.2017.03.029 [
DOI:10.1016/j.theriogenology.2017.03.029.]
24. Quinteiro-Filho, M., Rodrigues, A., Ribeiro, V., Ferraz-de-Paula, M. L., Pinheiro, L., & Palermo-Neto, J. (2015). Acute heat stress impairs performance parameters and induces mild intestinal enteritis in broiler chickens, role of acute hypothalamic-pituitary-adrenal axis activation. Journal of animal science, 90(6), 1986-1994.
https://doi.org/10.2527/jas.2011-3949 [
DOI:10.2527/jas.2011-3949.]
25. Rajaei-Sharifabadi, H., Ellestad, T., Porter, A., Donoghue, W., Bottje, G., & Dridi, S. (2017). Noni (Morinda citrifolia) modulates the hypothalamic expression of stress-and metabolic-related genes in broilers exposed to acute heat stress. Frontiers in genetics, 8, 192.
https://doi.org/10.3389/fgene.2017.00192 [
DOI:10.3389/fgene.2017.00192.]
26. Rual, J. F., Venkatesan, T., Hao, T., HirozaneKishikawa, A., Dricot, B., & Li., N. (2005). Towards a proteome-scale map of the human protein- protein interaction network. Nature, 437(7062), 1173-1178.
https://doi.org/10.1038/nature04209 [
DOI:10.1038/nature04209.]
27. Sakuma, Y., Maruyama, F., Qin, Y., Qsakabe, Y., Shinozaki, K., Shinozaki, F., & Yamaguchi-Shinozaki, K. (2006). Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat -stress-responsive gene expression. Proceedings of the National Academy of Sciences, 103(49), 18822-18827.
https://doi.org/10.1073/pnas.0605639103 [
DOI:10.1073/pnas.0605639103.]
28. Sen, S., Webber, J., & West, A. B. (2009). Depend of leucine-rich repeat kinase2 (LRRK2) kinase activity on dimerization. Journal of Biological Chemistry, 284 (52), 36346-36356.
https://doi.org/10.1074/jbc.M109.025437 [
DOI:10.1074/jbc.M109.025437.]
29. Sinaki, M. R., Sadeghi, A., Bahrami, D., & Shahrbabak, M. M. (2020). Identification of genes biological pathways and signaling affecting heat stress with microarray data sets in poultry. Iranian Journal of Animal Science, 51(3), 243-251. [
DOI:10.22059/ijas.2020.307066.653793.]
30. Singh, A. Upadhyay, G., Chandra, S., Kumar, D., Malakar, S. V., & Singh, M. K. (2020). Genomewide expression analysis of the heat stress response in dermal fibroblasts of Tharparkar (zebu) and Karan-Fries (zebu× taurine) cattle. Cell Stress and Chaperones, 25(2), 327-344.
https://doi.org/10.1007/s12192-020-01076-2 [
DOI:10.1007/s12192-020-01076-2.]
31. Sun, H., Jiang, R., Xu, S., Zhang, Z., Xu, G., Zheng, J., & Qu, L. (2015). Transcriptome responses to heat stress in hypothalamus of a meat-type chicken. Journal of animal science and biotechnology, 6, 1-12. 10.1186/s40104-015-0003-6. [
DOI:10.1186/s40104-015-0003-6]
32. Sun, L., Lamont, A. M., Cooksey, F., McCarthy, C. O., Tudor, K., Vijay-Shanker, S., & Schmidt, C. J. (2015). Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress and Chaperones, 20(6), 939-950.
https://doi.org/10.1007/s12192-015-0621-0 [
DOI:10.1007/s12192-015-0621-0.]
33. Tohidi Nezhad, F., Mohammadabadi, M. R., Esmaeili Zadeh, A., & Najmi Nouri, O. (2015). Comparison of different levels of rheb gene expression in different tissues of Raini Cashmi goat. Agricultural Biotechnology Journal, 6(4), 37-50. 10.22103/JAB.2015.1338.
34. Wang, J., Xiang, Y., Jiang, S., Li, F., Caviezel, S., Katawatin, H., & Duangjinda. M. (2021). Involvement of the VEGF signaling pathway in immunosuppression and hypoxia stress, analysis of mRNA expression in lymphocytes mediating panting in Jersey cattle under heat stress. BMC veterinary research, 17(1), 1-14. 10.1186/s12917-021-02912-y. [
DOI:10.1186/s12917-021-02912-y]
35. Weller, M., Alebrante, H., Campose, A., Saraiva, B., Silva, J., Donzele L., & Guimaraes, S. (2013). Effect of heat stress and feeding phosphorus levels on pig electron transport chain gene expression. Animal, 7(12), 1985-1993.
https://doi.org/10.1017/S1751731113001535 [
DOI:10.1017/S1751731113001535.]
36. Xing, T., Zhao, X., Zhao, S., Zhuang, D., & Xu, X. (2020). Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in stress-induced dysfunctional broiler pectoralis major muscle. Food chemistry, 319, 126531.
https://doi.org/10.1016/j.foodchem.2020.126531 [
DOI:10.1016/j.foodchem.2020.126531.]
37. Zerini, F., Cendron, F., Rovelli, G., Castellini, C., Cassandro, M. & Lasagna, E. (2020). Emerging genetic tools to investigate molecular pathways related to heat stress in chickens, A review. Animals, 11(1), 46.
https://doi.org/10.3390/ani11010046 [
DOI:10.3390/ani11010046.]
38. Zou, L., Cheng, C., Xu, H., Liu, Y., Wang, N., Li, E., & Xia, W. (2021). The role of miR‐128‐3p through MAPK14 activation in the apoptosis of GC2 spermatocyte cell line following heat stress. Andrology, 9(2), 665-672.
https://doi.org/10.1111/andr.12923 [
DOI:10.1111/andr.12923.]