دوره 13، شماره 38 - ( زمستان 1401 1401 )                   جلد 13 شماره 38 صفحات 27-19 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران
2- گروه علوم دامی پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران
چکیده:   (1377 مشاهده)
چکیده مبسوط
مقدمه و هدف: باسیلوس کوآگولانز سویه جدیدی از گروه پروبیوتیک هاست که علاوه بر اسپوردار بودن، موجب تحریک ترشح لاکتیک اسید در دستگاه گوارش می شود.  این آزمایش به منظور مطالعه اثر باسیلوس کوآگولانز1 بر صفات عملکردی و فلور میکروبی دستگاه گوارش جوجه ­های گوشتی سویه راس 308 انجام شد.
مواد و روش­ ها: به منظور مطالعه اثر مکمل پروبیوتیکی باسیلوس کوآگولانز در تغذیه جوجه­ های گوشتی، آزمایشی روی تعداد 960 قطعه جوجه گوشتی نر سویه راس 308 با میانگین وزن 0.12±40 گرم در قالب طرح کاملا تصادفی و در چهار گروه آزمایشی انجام شد . هر گروه آزمایشی شامل  12 تکرار 20 تایی بود.  دوره­ های تغذیه­ ای شامل دوره آغازین (10-1 روزگی) ، دوره رشد (25-11 روزگی) و دوره پایانی (42-26 روزگی) بود.  گروه های آزمایشی شامل 1) جیره پایه بدون استفاده از باسیلوس کوآگولانز، 2) جیره پایه با اضافه کردن مکمل پروبیوتیکی به میزان 400 گرم در تن خوراک2 در دوره آغازین و رشد و 200 گرم در تن خوراک3 در دوره پایانی، 3) جیره پایه با اضافه کردن مکمل پروبیوتیکی به میزان 400 گرم در تن خوراک در دوره آغازین و  200 گرم در تن خوراک در دوره رشد و پایانی و 4) جیره پایه با اضافه کردن مکمل پروبیوتیکی به میزان 200 گرم در تن خوراک در دوره های آغازین، رشد و پایانی. صفات تولیدی شامل افزایش وزن بدن، خوراک مصرفی، ضریب تبدیل غذایی در پایان هر یک از دوره ­های آغازین، رشد و پایانی اندازه گیری شد. در روزهای هفتم و 40ام، دو قطعه جوجه از هر تکرار با گاز دی اکسید کربن کشتار شدند و روده کور آن­ها جدا شد. این نمونه ­ها طی پروتکل­ های مشخص، برای شمارش کلستریدیوم پرفرجنس4،ای­کولای، المونلا، استرپتوکوکوس5 و لاکتوباسیلوس ­ها6 به آزمایشگاه ارسال شدند. همچنین دمای کلوآک تمامی جوجه­ های باقیمانده در طرح آزمایشی در روز 40 آزمایش اندازه گیری شد. میزان کل نیتروژن دفعی محتویات بستر و pH محتویات بستر در روز 40 اندازه گیری شد.
یافته ­ها: مصرف باسیلوس کوآگولانز بر افزایش وزن جوجه­ ها تا 42 روزگی تاثیر معنی­ داری نداشت ولی نسبت به گروه شاهد، گروه های دریافت کننده باسیلوس کوآگولانز افزایش وزن بالاتری را نشان دادند. در دوره آغازین و پایانی، مصرف باسیلوس کوآگولانز موجب کاهش مصرف خوراک شد (0/05p≤). در 42 روزگی، گروه­های دریافت کننده باسیلوس کوآگولانز، ضریب تبدیل پایین­تری را نسبت به گروه شاهد نشان دادند. افزودن باسیلوس کوآگولانز به جیره غذایی جوجه ­های گوشتی در 40 روزگی اثر معنی­ داری بر افزایش جمعیت لاکتوباسیل­ ها داشت (0/05p≥). از طرف دیگر،  با مصرف باسیلوس کوآگولانز، کاهشی در جمعیت باکتریایی کلستریدیوم­ها، استرپتوکوک­ها و اشرشیا کولی7 دیده شد (0/05p≥).  نتایج این آزمایش نشان می­دهد که جوجه های گوشتی دریافت کننده باسیلوس کوآگولانز، میزان نیتروژن8 فرار مدفوع کمتری نسبت به گروه شاهد تولید کرده ­اند (0/05p≥). همچنین، استفاده از این ترکیب باکتریایی در جیره جوجه­ های گوشتی سبب کاهش دمای کلوآک جوجه­ ها نسبت به گروه شاهد شده است (0/05p≥). افزودن این باکتری به جیره جوجه­ های گوشتی اثری بر pH بستر نداشت (0/05p≥).
نتیجه­ گیری: نتایج حاصل از این مطالعه نشان داد که مکمل سازی جیره با باسیلوس کوآگولانز سبب افزایش وزن بدن و کاهش ضریب تبدیل غذایی و تعادل جمعیت میکروبی مفید دستگاه گوارش می شود.

متن کامل [PDF 1389 kb]   (602 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه طیور
دریافت: 1400/12/23 | پذیرش: 1401/5/25

فهرست منابع
1. Adhikari, P., A. Kiess, R. Adhikari and R. Jha. 2020. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. Journal Applied Poultry Research., 29: 515-534. [DOI:10.1016/j.japr.2019.11.005]
2. Ahmed, S.T., M.M. Islam, H.S. Mun, H.J. Sim, Y.J. Kim and C.J. Yang. 2014. Effects of Bacillus amyloliquefaciens as a probiotic strain on growth performance, cecal microflora, and fecal noxious gas emissions of broiler chickens. Poultry science. 93: 1963-1971. [DOI:10.3382/ps.2013-03718]
3. Alagawany, M., M.E. Abd El-Hack, M.R. Farag, S. Sachan, K. Karthik and K. Dhama. 2018. The use of probiotics as eco-friendly alternatives for antibiotics in poultry nutrition. Environment Science Polutry Research, 25: 10611-10618. [DOI:10.1007/s11356-018-1687-x]
4. Alizadeh, M., P. Munyaka, A. Yitbarek, H. Echeverry and J.C. Rodriguez-Lecompte. 2017. Maternal antibody decay and antibody-mediated immune responses in chicken pullets fed prebiotics and synbiotics. Poultry Science, 96: 58-64. [DOI:10.3382/ps/pew244]
5. Awad, W.A., K. Ghareeb and J. Böhm. 2010. Effect of addition of a probiotic micro-organism to broiler diet on intestinal mucosal architecture and electrophysiological parameters: Addition of probiotic micro-organism to broiler diet. Journal Animal Physiology Animal Nutrition. 94: 486-494. [DOI:10.1111/j.1439-0396.2009.00933.x]
6. Bai, S.P., A.M. Wu, X.M. Ding, Y. Lei, J. Bai, K.Y. Zhang and J.S. Chio. 2013. Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poultry Science, 92: 663-670 [DOI:10.3382/ps.2012-02813]
7. Baron, M. 2009. A patented strain of Bacillus coagulans increased immune response to viral challenge. Postgraduate Medicine, 121: 114-118. [DOI:10.3810/pgm.2009.03.1971]
8. Bengmark, S. 1998. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut, 42: 2-7. [DOI:10.1136/gut.42.1.2]
9. Broom, L.J. and M.H. Kogut. 2018. Gut immunity: Its development and reasons and opportunities for modulation in monogastric production animals. Animal Health Research Review, 19: 46-52. [DOI:10.1017/S1466252318000026]
10. Casula, G. and S.M. Cutting. 2002. Bacillus probiotics: spore germination in the gastrointestinal tract. Applied and Environmental Microbiology, 68: 2344-2352. [DOI:10.1128/AEM.68.5.2344-2352.2002]
11. Cavazzoni, V. 1998. Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. British Poultry Science, 39: 526-529. [DOI:10.1080/00071669888719]
12. Cengiz, Ö., B.H. Köksal, O. Tatlı, O. Sevim, U. Ahsan, A.G. Üner, P.A. Ulutas, D. Beyaz, S. Büyükyörük and A. Yakan. 2015. Effect of dietary probiotic and high stocking density on the performance, carcass yield, gut microflora, and stress indicators of broilers. Poultry Science, 94: 2395-2403. [DOI:10.3382/ps/pev194]
13. Cervantes, H. 2015. Antibiotic-free poultry production. Is it sustainable? Journal Applied Poultry Research, 24: 91-97. [DOI:10.3382/japr/pfv006]
14. Diaz Carrasco, J.M., N.A. Casanova and M.E. Fernández Miyakawa. 2019. Microbiota, Gut Health and Chicken Productivity: What Is the Connection? Microorganisms, 7: 374. [DOI:10.3390/microorganisms7100374]
15. Ferket, P.R., E. van Heugten, T.A.T.G. van Kempen and R. Angel. 2002.Nutritional strategies to reduce environmental emissions from non-ruminants. Journal Animal Science, 80: 168-182 . [DOI:10.2527/animalsci2002.80E-Suppl_2E168x]
16. Frei, R., M. Akdis and L. Mahony. Prebiotics, probiotics, synbiotics, and the immune system.2015. Current Opinion Gastroenterol, 31: 153-158. [DOI:10.1097/MOG.0000000000000151]
17. Gadde, U.D., W.H. Kim, S.T. Oh and H.S. Lillehoj. 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry. Animal Health Research, 18: 26-45. [DOI:10.1017/S1466252316000207]
18. Gilley,G.E., D.P. Spare, R.K. Koelsch, D.D. Schulte, P.S. Miller and A.M. Parkhurst. 2000. Phototrophic anaerobic lagoons as affected by copper and zinc in swine diets. Transactions of the ASAE, 1853-1859. [DOI:10.13031/2013.3090]
19. Gheorghe, A., C. Tabuc, M. Habeanu, M. Dumitru, N.A. Lefter. 2018. Effect of dietary supplementation with probiotic mixture based on Lactobacillus strains on performance, gastrointestinal development and ileal microflora in broilers. Journal Biotechnology, 280: S41. [DOI:10.1016/j.jbiotec.2018.06.129]
20. Govender, M., Y.E. Choonara, P. Kumar, L.C. DuToit, S. VanVuuren, V.A. Illay. 2014. Review of the Advancements in Probiotic Delivery: Conventional vs. Non-conventional Formulations for Intestinal Flora Supplementation. Poultry Science, 15: 29-43. [DOI:10.1208/s12249-013-0027-1]
21. Guban, J., D.R. Korver, G.E. Allison and G.W. Tannock. 2006. Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poultry Science, 85: 2186-2194. [DOI:10.1093/ps/85.12.2186]
22. He, T., S. Long, S. Mahfuz, D. Wu, X. Wang, X. Wei and X. Piao. 2019. Effects of probiotics as antibiotics substitutes on growth performance, serum biochemical parameters, intestinal morphology, and barrier function of broilers. Animals, 9: 985. [DOI:10.3390/ani9110985]
23. Jadhav, K., S. Katoch, V.K. Sharma and B.G. Mane. 2015. Probiotics in broiler poultry feeds: A review. Journal Animal Nutrition and Physiology, 1: 4-16.
24. Jha, R., J.M. Fouhse, U.P. Tiwari, L. Li and B.P. Willing. 2019. Dietary fiber and intestinal health of monogastric animals. Veterinary Science, 6: 48. [DOI:10.3389/fvets.2019.00048]
25. Ji, F. and S.W. Kim. 2002. Reducing odor in swine production effect of enzymes and probiotics on ammonia production. Journal Animal Science, 80: 282.
26. Kazemi, S.A., H. Ahmadi and M.A.Karimi Torshizi. 2019. Evaluating two multistrain probiotics on growth performance, intestinal morphology, lipid oxidation and ileal microflora in chickens. Journal Animal Physiology Animimal Nutrition,103: 1399-1407. [DOI:10.1111/jpn.13124]
27. LeBlanc, J.G., F. Chain, R. Martín, L.G. Bermúdez-Humarán, S. Courau, P. Langella. 2017. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, 16: 79-89. [DOI:10.1186/s12934-017-0691-z]
28. Maathuis, A.J.H., D. Keller and S. Farmer. 2010. Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Beneficial Microbes, 1: 31-36. [DOI:10.3920/BM2009.0009]
29. Mingmongkolchai, S. and W. Panbangred. 2018. Bacillus probiotics: An alternative to antibiotics for livestock production. Journal Applied Microbiology, 124: 1334-1346. [DOI:10.1111/jam.13690]
30. Mountzouris, K.C., P. Tsitrsikos, I. Palamidi, A. Arvaniti, M. Mohnl, G. Schatzmayr and K. Fegeros. 2010. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Science, 89: 58-67 [DOI:10.3382/ps.2009-00308]
31. Olnood, C.G, S.S.M Beski, M. Choct and P.A. Iji. 2015. Novel probiotics: Their effects on growth performance, gut development, microbial community and activity of broiler chickens. Animal Nutrition, 1: 184-191. [DOI:10.1016/j.aninu.2015.07.003]
32. Pender, C.M., S. Kim, T.D. Potter, M.M. Ritzi, M. Young and R.A. Dalloul. 2017. Inovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poultry Science, 96: 1052-1062. [DOI:10.3382/ps/pew381]
33. Pieniz, S., R. Andreazza, T. Anghinoni, F. Camargo and A. Brandelli. 2014. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control journal, 37: 251-256 [DOI:10.1016/j.foodcont.2013.09.055]
34. Rhayat, L., V. Jacquier, K.S. Brinch, P. Nielsen, A. Nelson, P.A. Geraert and E. Devillard. 2017. Bacillus subtilis strain specificity affects performance improvement in broilers. Poultry Science, 96: 2274-2280. [DOI:10.3382/ps/pex018]
35. Roth, N., A. Käsbohrer, S. Mayrhofer, U. Zitz, C. Hofacre and K.J. Domig. 2019. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli. A global overview. Poultry Science, 98: 1791-1804. [DOI:10.3382/ps/pey539]
36. Sarao, L.K. and M. Arora. 2015. Probiotics, prebiotics, and microencapsulation: A review. Crit. Rev. Food Science, 57: 344-371. [DOI:10.1080/10408398.2014.887055]
37. Shang, Y., S. Kumar, B. Oakley and W.K. Kim. 2018. Chicken gut microbiota: importance and detection technology. Front. Veterinary Science, 5: 254. [DOI:10.3389/fvets.2018.00254]
38. Shinde, T., R. Vemuri, M.D. Shastri, A.P. Perera, S. Tristram, R. Stanley and R. Eri. 2019. Probiotic Bacillus coagulans MTCC 5856 spores exhibit excellent in-vitro functional efficacy in simulated gastric survival, mucosal adhesion and immunomodulation. Journal Functional Foods, 52: 100-108. [DOI:10.1016/j.jff.2018.10.031]
39. Shokryazdan, P., C.C. Sieo, R. Kalavathy, J.B. Liang, N.B. Alitheen, M. Faseleh Jahromi and Y.W. Ho. 2014. Probiotic potential of lactobacillus strains with antimicrobial activity against some human pathogenic strains. Biomedicine Research, 2014: 1-16 [DOI:10.1155/2014/927268]
40. Wang, Y. and Q. Gu. 2010. Effect of probiotic on growth performance and digestive enzyme activity of Arbor Acres broilers. Veterinary Science, 89: 163-167 [DOI:10.1016/j.rvsc.2010.03.009]
41. Yadav, S. and R. Jha. 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal Animal Science Biotechnology, 10: 2. [DOI:10.1186/s40104-018-0310-9]
42. Zhen, W., Y. Shao, X. Gong, Y. Wu, Y. Geng, Z. Wang and Y. Guo 2018. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of of broiler chickens challenged by Salmonella enteritidis. Poultry Science, 97: 2654-2666. [DOI:10.3382/ps/pey119]
43. Zheng, M., R. Zhang, X. Tian, X. Zhou, X. Pan and A. Wong. 2017. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front. Microbiology, 8: 908. [DOI:10.3389/fmicb.2017.00908]
44. Zorriehzahra, M.J., S.T. Delshad, M. Adel, R. Tiwari, K. Karthik, K. Dhama and C.C. Lazado, 2016. Probiotics as beneficial microbes in aquaculture: An update on their multiple modes of action: A review. Vet. Q., 36: 228-24 [DOI:10.1080/01652176.2016.1172132]
45. Zhou, X., Y. Wang, Q. Gu and W. Li. 2010. Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi Yellow chicken. Poultry Science. 89: 588-593. [DOI:10.3382/ps.2009-00319]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.