1. Abdalla, I.M., X. Lu, M. Nazar, Y. Fan, Z. Zhang, X. Wu, T. Xu and Z. Yang. 2021. Genome-wide association study on reproduction-related body-shape traits of Chinese holstein cows. Animals (Basel) 11(7): 1927. [
DOI:10.3390/ani11071927]
2. Abo-Ismail, M.K., L.F. Brito, S.P. Miller, M. Sargolzaei, D.A. Grossi, S.S. Moore, G. Plastow, P. Stothard, S. Nayeri and F.S. Schenkel. 2017. Genome-wide association studies and genomic prediction of breeding values for calving performance and body conformation traits in Holstein cattle. Genetic Selection Evolution, 49(1): 82. [
DOI:10.1186/s12711-017-0356-8]
3. An, B., L. Xu, J. Xia, X. Wang, J. Miao, T. Chang, M. Song, J. Ni, J. Li and H. Gao. 2020. Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genetics, 21(1): 32. [
DOI:10.1186/s12863-020-0837-6]
4. An, B., J. Xia, T. Chang, X. Wang, L. Xu, L. Zhang, X. Gao, Y. Chen and H. Gao. 2019. Genome-wide association study reveals candidate genes associated with body measurement traits in Chinese Wagyu beef cattle. Animal Genetics, 50(4): 386-390. [
DOI:10.1111/age.12805]
5. Bani Saadat, H., S. Varkoohi and S. Razagh Zadeh. 2018. Investigation of genetic, phenotypic and environmental trends for biometric traits in Makuie sheep. Research on Animal Production, 8(18): 139-146 (In Persian). [
DOI:10.29252/rap.8.18.139]
6. Braz, C.U., J.F. Taylor and T. Bresolin. 2019. Sliding window haplotype approaches overcome single SNP analysis limitations in identifying genes for meat tenderness in Nelore cattle. BMC Genetics, 20: 8. [
DOI:10.1186/s12863-019-0713-4]
7. Crowley, J., R. Evans, N. Mc Hugh, T. Pabiou, D. Kenny and M. McGee. 2011. Genetic associations between feed efficiency measured in a performance test station and performance of growing cattle in commercial beef herds. Journal of Animal Science, 89: 3382-3393. [
DOI:10.2527/jas.2011-3836]
8. Dadousis, C., S. Pegolo, G.J.M. Rosa, D. Gianola, G. Bittante and A. Cecchinato. 2017. Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. Journal of Dairy Science, 100: 1223-1231. [
DOI:10.3168/jds.2016-11587]
9. Devlin, B., S.A. Bacanu and K. Roeder. 2004. Genomic control to the extreme. Nature Genetics, 36: 1129-1130. [
DOI:10.1038/ng1104-1129]
10. Doyle, J.L., D.P. Berry, R.F. Veerkamp, T.R. Carthy, SW. Walsh and D.C. Purfield. 2020a. Genomic regions associated with skeletal type traits in beef and dairy cattle are common to regions associated with carcass traits, feed intake and calving difficulty. Frontiers Genetic, 11: 20. [
DOI:10.3389/fgene.2020.00020]
11. Doyle, J.L., D.P. Berry, R.F. Veerkamp, T.R. Carthy, SW. Walsh and D.C. Purfield. 2020b. Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds. Genetic Selection Evolution, 52(1): 2. [
DOI:10.1186/s12711-020-0523-1]
12. Durinck, S., P.T. Spellman, E. Birney and W. Huber. 2009. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nature Protocols, 4: 1184-1191. [
DOI:10.1038/nprot.2009.97]
13. Ghanem, N., M. Zayed, I. Mohamed, M. Mohammady and M. Shehata. 2021. Co-expression of candidate genes regulating growth performance and carcass traits of Barki lambs in Egypt. Agriculture science, 5: 202-216. [
DOI:10.20944/preprints202106.0199.v1]
14. Gholizadeh, M., Gh. Rahimi Mianji and A. Nejati Javaremi. 2014. Linkage disequilibrium estimation and haplotype based genome-wide association to detect QTLs affecting twinning rate in Baluchi sheep. Research on Animal Production, 10(5): 166-178 (In Persian).
15. Hansen, T.H., H. Vestergaard, T. Jørgensen, M.E. Jørgensen, T. Lauritzen, I. Brandslund, C. Christensen, O. Pedersen, T. Hansen and A.P. Gjesing. 2015. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes. BMC Medicine Genetics, 16:17. [
DOI:10.1186/s12881-015-0160-7]
16. Hong, Y., J. Ye, L. Dong, Y. Li, L. Yan, G. Cai, D. Liu, C. Tan and Z. Wu. 2021. Genome-wide association study for body length, body height, and total teat number in large white pigs. Frontiers Genetics, 12: 650370. [
DOI:10.3389/fgene.2021.650370]
17. Li, P., H.K. Tiwari, W.Y. Lin, D.B. Allison, W.K. Chung, R.L. Leibel, N. Yi and N. Liu. 2014. Genetic association analysis of 30 genes related to obesity in a European American population. International Journal Obesity (Lond), (5): 724-729. [
DOI:10.1038/ijo.2013.140]
18. Mooney, M.A. and B. Wilmot. 2015. Gene set analysis: A step-by-step guide. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 168: 517-527. [
DOI:10.1002/ajmg.b.32328]
19. Peñagaricano, F., K.A. Weigel, G.J. Rosa and H. Khatib. 2013. Inferring quantitative trait pathways associated with bull fertility from a genome-wide association study. Frontiers Genetics, 3:307-314. [
DOI:10.3389/fgene.2012.00307]
20. Peng, G., L. Luo and H. Siu. 2010. Gene and pathway-based second wave analysis of genome-wide association studies. European Journal of Human Genetics, 18:111-117. [
DOI:10.1038/ejhg.2009.115]
21. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M.A.R. Ferreira and D. Bender. 2007. PLINK: a toolset for whole-genome association and population-based linkage analysis. The American Journal of Human Genetics, 81: 559-575. [
DOI:10.1086/519795]
22. Resnyk, C.W., C. Chen, H. Huang, C.H. Wu J. Simon, E. Le Bihan-Duval, M.J. Duclos and L.A. Cogburn. 2015. RNA-seq analysis of abdominal fat in genetically fat and lean chickens highlights a divergence in expression of genes controlling adiposity, hemostasis, and lipid metabolism. PLoS One, 9(10): e0139549. [
DOI:10.1371/journal.pone.0139549]
23. Reimer, C., C.J. Rubin, A.R. Sharifi, N.T. Ha, S. Weigend, K.H. Waldmann, O. Distl, S.D. Pant, M. Schlather and H. Simianer. 2018. Analysis of porcine body size variation using re-sequencing data of miniature and large pigs. BMC Genomics, 19(1): 687. [
DOI:10.1186/s12864-018-5009-y]
24. Ring, S., A. Twomey, H. Byrne, M. Kelleher, T. Pabiou and M. Doherty. 2018. Genetic selection for hoof health traits and cow mobility scores can accelerate the rate of genetic gain in producer-scored lameness in dairy cows. Journal of Dairy Science, 101: 10034-10047. [
DOI:10.3168/jds.2018-15009]
25. Tao, L., X.Y. He, L.X. Pan, J.W. Wang, S.Q. Gan and Chu, M.X. 2020. Genome-wide association study of body weight and conformation traits in neonatal sheep. Animal Genetics, 51(2): 336-340. [
DOI:10.1111/age.12904]
26. Török, E., I. Komlósi, V. Szőnyi, B. Béri, G. Mészáros and J. Posta. 2021. Combinations of linear type traits affecting the longevity in Hungarian holstein-friesian cows. Animals (Basel), 11(11): 3065. [
DOI:10.3390/ani11113065]
27. Wang, L., P. Jia and R.D. Wolfinger. 2011. Gene set analysis of genome-wide association studies: Methodological issues and perspectives. Genomics, 98: 1-8. [
DOI:10.1016/j.ygeno.2011.04.006]
28. Wu, X., M. Fang, L. Liu, S. Wang, J. Liu, X. Ding, S. Zhang, Q. Zhang, G. Su and D. Sun. 2013. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genomics, 17(14): 897. [
DOI:10.1186/1471-2164-14-897]
29. Xiong, D.H., X.G. Liu, Y.F. Guo, L.J. Tan, L. Wang, B.Y. Sha, Y.W. Lundberg, R.R. Recker, Y.Z. Liu, Y.J. Liu, J.M. Zmuda and H.W. Deng. 2009. Genome-wide association and follow-up replication studies identified ADAMTS18 and TGFBR3 as bone mass candidate genes in different ethnic groups. American Journal of Human Genetics, 84(3): 388-98. [
DOI:10.1016/j.ajhg.2009.01.025]
30. Yougbare, B., A. Soudre, D. Ouedraogo, B.L. Zoma, A.S.R. Tapsoba, M. Sanou, S. Ouedraogo-Kone, P.A. Burger, M. Wurzinger, N. Khayatzadeh, H.H. Tamboura, O.A. Mwai, A. Traore, J. Solkner and G. Meszaros. 2021. Genome-wide association study of trypanosome prevalence and morphometric traits in purebred and crossbred Baoule cattle of Burkina Faso. PLoS ONE, 16(8): e0255089. [
DOI:10.1371/journal.pone.0255089]
31. Young, M.D., M.J. Wakefield, G.K. Smyth and A. Oshlack. 2010. Method gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11: 14-23. [
DOI:10.1186/gb-2010-11-2-r14]
32. Zhang, H., Z. Zhuang, M. Yang, R. R. Ding, J. Quan, S. Zhou, T. G, Z. Xu, E. Zheng, J. Yang and Z. Wu. 2021. Genome-wide detection of genetic loci and candidate genes for body conformation traits in Duroc ×Landrace × Yorkshire crossbred pigs. Frontiers Genetic, 12: 664343. [
DOI:10.3389/fgene.2021.664343]
33. Zink, V., L. Zavadilová, J. Lassen, M. Štipkova, J. Vacek and L. Štolc. 2014. Analyses of genetic relationships between linear type traits, fat-to-protein ratio, milk production traits, and somatic cell count in first-parity Czech Holstein cows. Czech Journal of Animal Science, 59: 539-547. [
DOI:10.17221/7793-CJAS]
34. Zhou, X. and M. Stephens. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44: 821. [
DOI:10.1038/ng.2310]