دوره 12، شماره 33 - ( پاییز 1400 1400 )                   جلد 12 شماره 33 صفحات 161-151 | برگشت به فهرست نسخه ها


XML English Abstract Print


ژنتیک و اصلاح دام، گروه علوم دامی، دانشگاه زابل
چکیده:   (1826 مشاهده)
صفات رشد و تولید مثل از ویژگی­­ های شناخته شده موجودات زنده، به دلیل ارتباط مستقیمی که با سود اقتصادی دارند، از اهمیّت ویژه ­ای برخوردارند. توصیف ژنتیکی منحنی رشد و همبستگی فراسنجه ­های آن با صفات رشد و تولیدمثل در تعیین راهبردهای انتخاب می ­تواند مفید باشد. بدین منظور از داده­ های 2035 بلدرچین، که طی سال­های 1398-1396 در مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی جمع­ آوری شده بود، استفاده شد. برای شناسایی عوامل ثابت مؤثّر بر صفات از مدل خطّی رویّه GLM نرم ­افزار  SAS و برای تخمین پارامترهای منحنی رشد، از مدل رگرسیون غیرخطّی گمپرتز استفاده شد. اجزای (کو) واریانس و پارامترهای ژنتیکی منحنی رشد و صفات رشد و تولیدمثل حداکثر درست­نمایی محدود شده با استفاده از تجزیه و تحلیل چند صفته توسّط نرم­ افزار DMU برآورد شدند. وراثت ­پذیری وزن بدن در 35 روزگی، وزن مجانبی، نرخ بلوغ، سن در نقطه عطف منحنی، نرخ رشد مطلق، نرخ رشد نسبی، تعداد تخم و درصد باروری بترتیب 0/222، 0/238، 0/416، 0/283، 0/168، 0/222، 0/283 و 0/071 برآورد گردید. همبستگی­ های ژنتیکی بین فراسنجه­ های منحنی رشد با نرخ رشد مطلق و نرخ رشد نسبی و وزن بدن در 35 روزگی متوسط رو به بالا (0/924 0/439) بود. قوی­ ترین همبستگی هم بین سن در نقطه عطف منحنی و نرخ رشد نسبی (0/924) بدست آمد. به جز همبستگی­ های ژنتیکی بین تعداد تخم و درصد باروری با دیگر صفات، اکثر همبستگی­ های ژنتیکی مثبت برآورد شدند. بر اساس نتایج، مدیریت بهینه عوامل محیطی در افزایش رشد و عملکرد تولید مثلی اثرگذار هستند و انتخاب ژنتیکی برای صفت رشد با استفاده از فراسنجه ­های منحنی رشد می­تواند باعث بهبود پتانسیل ژنتیکی حیوان شود.
متن کامل [PDF 1488 kb]   (401 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک و اصلاح نژاد دام
دریافت: 1400/3/10 | ویرایش نهایی: 1400/9/10 | پذیرش: 1400/5/19 | انتشار: 1400/7/10

فهرست منابع
1. Aggrey, S.E. 2002. Comparison of three nonlinear and spline regression models for describing chicken growth curves. Poultry Science, 81(12): 1782-1788. [DOI:10.1093/ps/81.12.1782]
2. Aggrey, S.E., G.A. Ankra-Badu and H.L. Marks. 2003. Effect of long-term divergent selection on growth characteristics in Japanese quail. Poultry Science, 82: 538-542. [DOI:10.1093/ps/82.4.538]
3. Aggrey, S.E. 2004. Modelling the effect of nutritional status on preasymptotic and relative growth rates in a random-bred chicken population. Journal of Animal Breeding and Genetics, 121: 260-268. [DOI:10.1111/j.1439-0388.2004.00462.x]
4. Akbas, Y. and I. Oguz. 1998. Growth curve parameters of lines of Japanese quail (Coturnix coturnix japonica), unselected and selected for four-week bodyweight. European Poultry Science, 62: 104-109.
5. Akbas, Y. and E. Yaylak. 2000. Heritability estimates of growth curve parameters and genetic correlations between the growth curve parameters and weights at different age of Japanese quail. Archiv Geflügelkunde, 64(4): 141-146.
6. Alkan, S., M. Mendes, K. Karabag and M.S. Balcioglu. 2009. Effects short term divergent selection of 5-week body weight on growth characteristics in Japanese quail. Archive Geflugelkd, 73: 124-131.
7. Barbato, G.F., P. Cramer and R.H. Hammerstedt. 1998. Evaluation of an in vitro sperm-egg binding assay assessing male infertility. Biology of Reproduction, 58: 686-699. [DOI:10.1095/biolreprod58.3.686]
8. Barbieri, A., R.K. Ono, L.L. Cursino, V. Farah, M.P. Pires, T.S. Bertipaglia, A.V. pires, L. Cavani, L.O.D. Carreno and R. Fonseca. 2015. Genetic parameters for body weight in meat quail. Poultry Science, 94: 169-171. [DOI:10.3382/ps/peu062]
9. Besbes, B., V. Ducrocq, J.L. Foulley, M. Protais, A. Tavernier, M. Tixier Boichard and C. Beaumont. 1992. Estimation of genetic parameters of egg production traits of laying hens by restricted maximum likelihood applied to a multiple-trait reduced animal model. Genetics Selection Evolution, 24: 539-552. [DOI:10.1186/1297-9686-24-6-539]
10. Camci, O., C. Erensayın and S. Aktan. 2002. Relations between age at sexual maturity and some production characteristics in quail. Archiv Fur Geflugelkunde, 66: 280-282.
11. Daikwo, S.I., U.A. Dike and N.I. Dim. 2014. Estimation of genetic parameters of weakly body weight and growth rate of Japanese quail. LOSR Journal of Agriculture and veterinary science, 7(10): 56-62. [DOI:10.9790/2380-071015662]
12. El-Fiky, F.A., M.A. Aboulhassan, S.S. Batta and G.E.Y. Attalah. 2000. Comparative study of egg production traits in two strains of Japanese quail. Fayoum Journal of Agricultural Research and Development, 14: 198-205.
13. El-Fiky, F.A., T.A. Shamma and H.A. El-Oksh. 1994. Genetic parameters of some productive and reproductive traits in Japanese quail. Meteorology, Environment and Arid Land Agriculture Science, 5: 45-60.
14. Finco, E.M., S.M. Marcato, A.C. Furlan, R.M. Rossi, D.O. Grieser, V. Zancanela, T.M. Moraes de Oliviera and C. Espejo Stanquevis. 2016. Adjustment of four growth models through Bayesian inference on weight and body nutrient depositions in laying quail. Brazilian Journal of Animal Science, 45(12): 737- 744. [DOI:10.1590/s1806-92902016001200002]
15. Gurcan, E.K., O. Cobanoglu and T. Genc. 2012. Determination of body weight-age relationship by nonlinear models in Japanese quail. Journal of Animal and Veterinary Advances, 11(3): 314-317. [DOI:10.3923/javaa.2012.314.317]
16. Gotuzzo, A.G., M. Piles, R.P. Delle-Flora, J.M. Germano, J.S. Reis, D.U. Tyska and N.J.L. Dionello. 2018. Bayesian hierarchical model for comparison of different nonlinear function and genetic parameter estimates of meat quails. Poultry Science, 0: 1-9.
17. Grimm, K.J. and N. Ram. 2009. Nonlinear growth models in Mplus and SAS. Structure Equation Modeling, 16: 676-701. [DOI:10.1080/10705510903206055]
18. Hyankova, L., H. Knizetova, L. Dedkova and J. Hort. 2001. Divergent selection shape of growth curve in Japanese quail 1. Responses in growth parameters and food conversion. British Poultry Science, 42: 583-589. [DOI:10.1080/00071660120088371]
19. Kaplan, S., D. Narinc and E.K. Gürcan. 2016. Genetic parameter estimates of weekly body weight and Richard's growth curve in Japanese quail. European Poultry Science, 80: 1-10. [DOI:10.1399/eps.2016.165]
20. Kaplan, S and E.K. Gürcan. 2018. Comparison of growth curve using non-linear regression function in Japanese quail. Journal of Applied Animal Research, 46(1): 112-117. [DOI:10.1080/09712119.2016.1268965]
21. Karabağ, K., S. Alkan, T. Karslı and M.S. Balcıoğlu, 2017. Genetic changes in growth curve parameters in Japanese quail lines divergently selected for body weight. European Poultry Science, 81: 1-10. [DOI:10.1399/eps.2017.205]
22. Lotfi, E., S. Zerehdaran and M. Ahani Azari. 2012. Study of fixed effects on some productive and reproductive characteristics in Japanese quail. Animal Science Journal, 23(1): 73-84 (In Persian).
23. Lupi, T.M., J.M. León, S. Nogales, C. Barba and J.V. Delgado. 2015. Genetic parameters of traits associated with the growth curve in Segureña sheep. Animal, 1(5): 1-7. [DOI:10.1017/S1751731115002773]
24. Madsen, P. and J. Jensen. 2008. DMU. A package for multivariate analyzing multivariate mixed models. Version 6. University of Aarhus, Faculty Agricultural Sciences (DJF), Department of Genetics and Biotechnology, Research Centre Foulum, Box 50, 8830 Tjele, Denmark.
25. Magda, I., M. Abo Samaha, M. Sharaf and S.A. Hemeda. 2010. Phenotypic and genetic estimates of some productive and reproductive traits in Japanese quail. Egypt Poultry Science, 30: 875-892.
26. Mahmoud, M. El-Attroung and Mahmoud, M. Iraqi. 2021. Influence of selection for egg production on egg quality traits in Japanese quail. South African Journal of Animal Science. 51(1): 128-137. [DOI:10.4314/sajas.v51i1.15]
27. Manjula, P., H.B. Park, D. Seo, N. Choi, S. Jin, S.J. Ahn, K.N. Heo, B.S. Kang and J.H. Lee. 2018. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken. Asian-Australasian Journal of Animal Sciences, 00: 1-6. [DOI:10.5713/ajas.17.0179]
28. Marks, H. 1990. Genetics of growth and meat production in other Galliforms. Pages 677-690 in Poultry Breeding and Genetics. R. D. Crawford, ed. Elsevier, Amsterdam, the Netherlands.
29. Matos, C.A., D.L. Thoma, D. Gianola, R.J. Tempelman, L.D. Young. 1997. Genetic analysis of discrete traits in sheep using linear and nonlinear models: I. Estimation of genetic parameters. Journal of Animal Science 75: 76-87. [DOI:10.2527/1997.75176x]
30. Mrode, R. 2005.Thompson R, Linear models for the prediction of animal breeding values, 2nd edn. CABI, USA, 193-207. [DOI:10.1079/9780851990002.0193]
31. Mielenz, N., R.N. Ronny and L. Schuler. 2006. Estimation of additive and non-additive genetic variances of body weight, egg weight and egg production for quails Coturnix coturnix japonica with an animal model analysis. Archive Tierzucht Dummerstorf, 49: 300-307. [DOI:10.5194/aab-49-300-2006]
32. Mignon-Grasteau, S., M. Piles, L. Varona, H. De Rochambeau, J.P. Poivey, A. Blasco and C. Beaumont. 2000. Genetic analysis of growth curve parameters for male and female chickens resulting from selection on shape of curve. Journal of Animal Science, 78: 2515-2524. [DOI:10.2527/2000.78102515x]
33. Momoh, O.M., D. Gambo and N.I. Dim. 2014. Genetic parameters of growth, body, and egg traits in Japanese quails (Cotournix cotournix japonica) reared in southern guinea savannah of Nigeria. Journal of Applied Biosciences, 79: 6947-6954. [DOI:10.4314/jab.v79i0.8]
34. Narinc, D., T. Aksoy, E. Karaman and M.Z. Firat. 2014. Genetic parameter estimates of growth curve and reproduction traits in Japanese quail. Poultry Science, 93: 24-30. [DOI:10.3382/ps.2013-03508]
35. Narinc, D., T. Aksoy and E. Karaman. 2010. Genetic parameters of growth curve parameters and weekly body weights in Japanese quail. Journal of Animal Veterinary advances, 9: 501-507. [DOI:10.3923/javaa.2010.501.507]
36. Narinc, D. and B.A. GENC. 2021. Genetic estimates of fear, growth and carcass characteristics in Japanese quail. Turkish Journal of Veterinary and Animal Science, 45: 272- 280.
37. National Research Council, 1994. Nutrient requirement of poultry. 9th Ed., National Academy Press, Washington DC. USA.
38. Nestor, K.E., J.W. Anderson and R.A. Patterson. 2000. Genetics of growth and reproduction in the turkey. 14. Changes in genetic parameters over thirty generations of selection for increased body weight. Poultry Science, 79: 445-452. [DOI:10.1093/ps/79.4.445]
39. Nestor, K.E., W.L. Bacon, N.B. Anthony and D.O. Noble. 1996. Divergent selection for body weight and yolk precursor in Coturnix coturnix japonica. II. Correlated responses over thirty generations. Poultry Science, 75: 472-477. [DOI:10.3382/ps.0750472]
40. Okenyi, N., H.M. Ndofor-Foleng, C.C. Ogbu and C.I. Agu. 2013. Genetic parameters and consequences of selection for short-term egg production traits in Japanese quail in a tropical environment. African Journal of Biotechnology, 12: 1357-1362.
41. Özsoy, A.N. and S. Aktan. 2011. Estimation of genetic parameters for body weight and egg weight traits in Japanese quails. Trends in Animal and Veterinary Sciences, 2: 17-20.
42. Ozsoy, A.N. 2019a. Egg and chick quality characteristics of meat type Japanese quail (Coturnix coturnix japonica) line by canonical correlation analysis. Fresenius Environmental Bulletin, 28(4): 2582-2588.
43. Ozsoy, A.N. 2019b. The genetic parameters of weight gain and feed efficiency of Japanese quails (Coturnix coturnix japonica) under Tenebrio molitor L and control nutritional environments. Fresenius Environmental Bulletin, 28(3): 2115-2120.
44. Ozsoy, A.N. 2019c. Genetic parameter estimations of bayesian hierarchical linear and nonlinear growth curves in Japanese quails. Fresenius Environmental Bulletin, 28(9): 6883-6889.
45. Rezvannejad, E., A. Boustan and S. Lotfi. 2015. Comparison of reproductive performance of two pure lines of Japanese quail and their reciprocal crosses. Research on Animal Production, 8(15): 144- 148 (In Persian). [DOI:10.29252/rap.8.15.144]
46. Rizzi, C., B. Contiero and M. Cassandro. 2013. Growth patterns of Italian local chicken populations. Poultry Science, 92: 2226-2235. [DOI:10.3382/ps.2012-02825]
47. Saatci, M., I. Dewi, R. Aksoy, T. Kirmizibayrak and Z. Ulutas. 2002. Estimation of genetic parameters for weekly live weight in one to one side and dam pedigree recorded Japanese quail. 20 p. Proceedings of the 7th World Congress on Genetics Applied to Livestock Production. Paris, France.
48. Saghi, R. and D.A. Saghi. 2021. Estimation of heritability, phenotypic and genetic correlations for growth curve characteristics of Japanese quail. Journal of Animal Science Research, (In press) (In Persian).
49. Sakunthala, D., M. Ramesh Gupta, M. Gnana Prakash, S. Qudratullah and A. Rajasekhar Reddy. 2010. Genetic studies on growth and production traits in two strains of Japanese quail. Tamil Nadu Journal of Veterinary and Animal Sciences, 6(5): 223-230
50. Sargolzaei, M., H. Iwaisaki and J. Colleau. 2006. CFC: A tool for monitoring genetic diversity. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production. Belo Horizonte; Minas Gerais Brazil.
51. SAS Institute Inc. 2009. SAS/STAT Users Guide, Version 9.2. SAS Institute Inc., Cary, NC.
52. Sezer, M., E. Berberoglu and Z. Ulutas. 2006. Genetic association between sexual maturity and weekly live weights in laying-type Japanese quail. South African Journal of Animal Science, 36(2): 142-148. [DOI:10.4314/sajas.v36i2.3997]
53. Tixier-Boichard, M., F. Leenstra, D.K. Flock, P.M. Hocking and S. Weigend. 2012. A century of poultry genetics. World's Poultry Science Journal, 68: 307-321. [DOI:10.1017/S0043933912000360]
54. Valente, B.D., G.J.M. Rosa, M.A. Silva, R.B. Teixeira and R.A. Torres. 2011. Searching for phenotypic causal networks involving complex traits: an application to European quail Genet. Selection Evolution, 43: 37-48. [DOI:10.1186/1297-9686-43-37]
55. Vali, V., M.A. Edriss and H.R. Rahmani. 2005. Genetic parameters of body and some carcass traits in two quail strains. International Journal of Poultry Science, 5: 296-300. [DOI:10.3923/ijps.2005.296.300]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.