دوره 12، شماره 31 - ( بهار 1400 )                   جلد 12 شماره 31 صفحات 145-134 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

AsghariEsfeden B, Dashab G R, Banabazi M H, Rokouei M. (2021). Analysis of Genetic Differences in Genes Associated with Immune Response Among Purebred and Crossbreed Sistani and Montebeliarde Cow Populations using RNA-Seq Data. rap. 12(31), 134-145. doi:10.52547/rap.12.31.134
URL: http://rap.sanru.ac.ir/article-1-1117-fa.html
اصغری اسفدن بتول، داشاب غلامرضا، بنابازی محمد حسین، رکوعی محمد. آنالیز تفاوت ژنتیکی ژن های مرتبط با پاسخ ایمنی بین گاوهای نژاد خالص و آمیخته سیستانی و مونت بیلیارد با استفاده از داده های RNA-Seq پژوهشهاي توليدات دامي 1400; 12 (31) :145-134 10.52547/rap.12.31.134

URL: http://rap.sanru.ac.ir/article-1-1117-fa.html


گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران
چکیده:   (2203 مشاهده)
جهش در طول توالی ژن­ها سبب بروز تغییرات نوکلئوتیدی و درنتیجه ایجاد عملکرد جدید در ژن­ها می­شود. هدف از مطالعه حاضر، ارزیابی تنوع ژنتیکی و تحلیل بیان متفاوت ژن‌های مرتبط با سیستم ایمنی در بین دو جمعیت گاوهای نژاد خالص و آمیخته سیستانی و مونت­ بیلیارد بود. در این مطالعه از نتایج مربوط به آنالیز بیان افتراقی در بین جمعیت گاو­های نژاد خالص و آمیخته سیستانی و مونت­ بیلیارد با استفاده از داده­ های RNA-Seq جهت تجزیه ژنتیکی و ترسیم درخت فیلوژنتیکی استفاده ‌شد. توالی­های نوکلئوتیدی با روش ClustalW توسط نرم ­افزار MegaAlign هم­ردیفـ سازی­ شدند و درخت فیلوژنتیکی و ماتریس تفاوت و تشابه توالی­ها ترسیم  شد. بر اساس نتایج این تحقیق، میانگین اختلاف نوکلئوتیدها و تعداد کل جهش­ها برای ژن‌های مورد مطالعه در بین جمعیت‌های گاو نژاد خالص و آمیخته سیستانی و مونت­بیلیارد به­ترتیب در محدوده­ی (2598/66-186) و (3898-74) قرار داشت. هم­چنین، نواحی حفاظت‌ شده بخش اندکی از توالی ژن­های مورد مطالعه را تشکیل دادند که این امر نشان دهنده چند شکلی بالای این ژن­ها و هم­چنین مستعد بودن به تغییرات نوکلئوتیدی و جهش می­باشد. نتایج حاصل از درخت فیلوژنی توالی نوکلئوتیدی ژن­های مورد مطالعه نشان داد که تنوع ژنتیکی و واگرایی برای ژن­های مورد مطالعه در بین جمعیت­های گاو نژاد خالص، آمیخته سیستانی و مونت­ بیلیارد و ایندیکوس وجود دارد. میزان عددی نسبت جایگزینی dN/dS برای ژن­های مورد مطالعه نشان ­دهنده انتخاب مثبت این ژن­ها بود.
متن کامل [PDF 845 kb]   (498 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژنتیک و اصلاح نژاد دام
دریافت: 1399/3/31 | ویرایش نهایی: 1400/3/25 | پذیرش: 1399/7/16 | انتشار: 1400/3/25

فهرست منابع
1. Adema, G.J., F. Hartgers, R. Verstraten, E. de Vries, G. Marland, S. Menon, J. Foster, Y. Xu, P. Nooyen, T. McClanahan, K.B. Bacon and C.G. Figdor. 1997. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells. Nature, 387: 713. [DOI:10.1038/42716]
2. Ahmadian, K., G. Rahimi Mianji, H. Sayahzadeh and H. Deldar. 2017. Assessment of Genetic diversity and phylogenetic relationship of Iranian indigenous chickens based on mitochondrial D-Loop sequences. Research on Animal Production, 8(17): 140-148 (In Persian). [DOI:10.29252/rap.8.17.140]
3. Alqumber, M.A., R.K. Mandal, S. Haque, A.K. Panda, N. Akhter and A. Ali. 2013. A genetic association study of CCL5-28 C> G (rs2280788) polymorphism with risk of tuberculosis: a meta-analysis. PLOS ONE, 8(12): e83422. [DOI:10.1371/journal.pone.0083422]
4. Arenberg, D.A., P.J. Polverini, S.L. Kunkel, A. Shanafelt, J. Hesselgesser, R. Horuk and R.M. Strieter. 1997. The role of CXC chemokines in the regulation of angiogenesis in nonsmall cell lung cancer. Journal of Leukocyte Biology, 62: 554-562. [DOI:10.1002/jlb.62.5.554]
5. Asghari, B., G.R. Dashab, M.H. Banabazi and M. Rokouei. 2020. Evaluation of Codon usage pattern and its relation with differentially expressed genes between two populations of purebred and crossbreed Sistani and Montbeliarde cows. Research on Animal Production, 2(22): 188-198 (In Persian).
6. Ashley, R.L., A.Q. Antoniazzi, R.V. Anthonyand T.R. Hansen. 2011. The chemokine receptor CXCR4 and its ligand CXCL12 are activated during implantation and placentation in sheep. Reproductive Biology and Endocrinology, 9: 148. [DOI:10.1186/1477-7827-9-148]
7. Barazandeh, A., M.R. Mohammadabadi, M. Ghaderi and H. Nezamabadipour. 2016. Predicting CpG islands and their relationship with genomic feature in cattle by hidden markov model algorithm. Iranian Journal of Applied Animal Science, 6: 571-579.
8. Busillo, J.M. and J.L. Benovic. 2007. Regulation of CXCR4 signaling. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768: 952-963. [DOI:10.1016/j.bbamem.2006.11.002]
9. Butler, J.M. 2011. Advanced topics in forensic DNA typing: methodology. Academic press.
10. Ding, Z., K. Xiong, T.B. Issekutz. 2000. Regulation of chemokine-induced transendothelial migration of T lymphocytes by endothelial activation: Differential effects on naive and memory T cells. Journal of Leukocyte Biology, 67: 825-833. [DOI:10.1002/jlb.67.6.825]
11. Ebrahimi, Z., M.R. Mohammadabadi, A.K. Esmailizadeh, A. Khezri and A. Najmi Noori. 2015a. Association of PIT1 gene with milk fat percentage in Holstein cattle. Iranian Journal of Applied Animal Science, 5: 575-582.
12. Ebrahimi, Z., M.R. Mohammadabadi, A.K. Esmailizadeh and A. Khezri. 2015b. Association of PIT1 gene and milk protein percentage in Holstein cattle. Journal of Livestock Science and Technologies, 3: 41-49.
13. Federsppiel, B., I.G. Melhado, A.M. Duncan, A. Delaney, K. Schappert, I. Clark-Lewisand F.R. Jirik. 1993. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen. Genomics, 16(3): 707-712. [DOI:10.1006/geno.1993.1251]
14. Ghaderi-Zefrehei, M., A. Torabi, M. Esmaeilpour, M. Salimpour and M.H. Banabazi. 2020. Investigating the Function of Predicted Proteins from RNA-Seq Data in Holstein and Cholistani Cattle Breeds. Research on Animal Production, 11(28): 121-135 (In Persian).
15. Ghasemi, M., A. Baghizadeh and M.R.M. Abadi. 2010. Determination of genetic polymorphism in Kerman Holstein and Jersey cattle population using ISSR markers. Australian Journal of Basic and Applied Sciences, 4: 5758-5760.
16. Gibbons, D.L., L. Abeler-Dörner, T. Raine, I.Y. Hwang, A. Jandke, M. Wencker, L. Deban, C.E. Rudd, P.M. Irving and J.H. Kehrl. 2011. Cutting edge: regulator of G protein signaling-1 selectively regulates gut T cell trafficking and colitic potential. The Journal of Immunology, 187: 2067-2071. [DOI:10.4049/jimmunol.1100833]
17. Gilbert, F.B., P. Cunha, K. Jensen, E.J. Glass, G. Foucras, C. Robert-Granié, R. Ruppand and P. Rainard. 2013. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system. Veterinary Research, 44: 40. [DOI:10.1186/1297-9716-44-40]
18. Guo, C.C., M. Wang, F.D. Cao, W.H. Huang, D. Xiao, X.G. Ye, M.L. Ou, N. Zhang, B.H. Zhang, Y. Liu and G. Yang. 2016. Meta-analysis on associations of RGS1 and IL12A polymorphisms with celiac disease risk. International Journal of Molecular Sciences, 17(4): 457. [DOI:10.3390/ijms17040457]
19. Han, S.B., C. Moratz, N.N. Huang, B. Kelsall, H. Cho, C.S. Shi, O. Schwartz and J.H. Kehrl. 2005. Rgs1 and Gnai2 regulate the entrance of B lymphocytes into lymph nodes and B cell motility within lymph node follicles. Immunity, 22: 343-354. [DOI:10.1016/j.immuni.2005.01.017]
20. Harvey, P.J., A.M. Keightley, Y.M. Lam, C. Cameron and D. Lillicrap. 2000. A single nucleotide polymorphism at nucleotide-1793 in the von Willebrand factor (VWF) regulatory region is associated with plasma VWF: Ag levels. British Journal of Hematology, 109(2): 349-353. [DOI:10.1046/j.1365-2141.2000.02000.x]
21. Horuk, R. 2001. Chemokine receptors. Cytokine and growth factor reviews, 12: 313-335. [DOI:10.1016/S1359-6101(01)00014-4]
22. Jafari Darehdor, A.H., M.R. Mohammadabadi, A.K. Esmailizadeh and A. Riahi Madvar. 2016. Investigating expression of CIB4 gene in different tissues of Kermani Sheep using Real Time qPCR. Journal of Ruminant Research, 4: 119-132 (In Persian).
23. Janel, N., A.M. Dosne, B. Obert, D. Meyer and D. Kerbiriou-Nabias.1997. Functional characterization of bovine von Willebrand factor gene promoter in bovine endothelial cells demonstrates species-specific properties. Gene, 198: 127-134. [DOI:10.1016/S0378-1119(97)00302-8]
24. Kamalzadeh, A., M. Rajabbaigy and A. Kiasat. 2008. Livestock production systems and trends in livestock industry in Iran. Journal of agriculture and social sciences, 4: 183-188.
25. Karimi, V., N. Hedayat Evrigh, R. Seyed Sharifi and S. Nikbin. 2017. Invetigation of genetic structure of Khalkhali goat using mitochondrial genome. Novin Genetic Journal, 12(2): 217-227 (In Persian).
26. Keightley, A.M., Y.M. Lam, J.N. Brady, C.L. Cameron and D. Lillicrap. 1999. Variation at the von Willebrand factor (vWF) gene locus is associated with plasma vWF: Ag levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter. The Journal of the American Society of Hematology, 93(12): 4277-4283. [DOI:10.1182/blood.V93.12.4277.412k03_4277_4283]
27. Kharrati Koopaei, H., M.R. Mohammad Abadi, S. Ansari Mahyari, A.R. Tarang, P. Potki, A.K. Esmailizadeh. 2012. Effect of DGAT1 variants on milk composition traits in Iranian Holstein cattle population. Animal Science Papers and Reports, 30(3): 231-240.
28. Kharrati Koopaei, H., M.R. Mohammadabadi, S. Ansari Mehyari, A.K. Esmailizadeh, A. Tarang, M. Nikbakhti. 2011. Genetic variation of DGAT1 gene and its association with milk production in Iranian holstein cattle breed population. Iranian Journal of Animal Science Research, 3(2): 185-192 (In Persian).
29. Korber, B. 2000. HIV Signature and Sequence Variation Analysis. Computational Analysis of HIV Molecular. Sequences, Chapter 4: 55-72. Allen G. Rodrigo and Gerald H. learn, eds. Dordrecht, Netherland: Kluwer Academic Publishers.
30. Lacquemant, C., C. Gaucher, C. Delorme, G. Chatellier, Y. Gallois, M. Rodier, P. Passa, B. Balkau, C. Mazurier, M. Marre and P. Froguel. 2000. Association between high von Willebrand factor levels and the Thr789Ala vWF gene polymorphism but not with nephropathy in type I diabetes. Kidney International, 57(4): 1437-1443. [DOI:10.1046/j.1523-1755.2000.00988.x]
31. Librado, P.R. and J. Rozas. 2009. DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Journal of Bioinformatics, 25: 1451-1452. [DOI:10.1093/bioinformatics/btp187]
32. Mohammad Abadi, M.R. and A. Mohammadi. 2010. Study of beta-lactoglobulin genotypes in native and Holstein cattle of Kerman province. Journal of Animal Productions, 12(2): 61-67.
33. Mohammadabadi, M.R. 2017. Role of clostridium perfringens in pathogenicity of some domestic animals. Journal of Advances in Agriculture, 7: 1117-1121. [DOI:10.24297/jaa.v7i3.6325]
34. Mohammadabadi, M.R. 2019. Dlk1 gene expression in Raini Cashmere goat using Real Time PCR. Agricultural Biotechnology Journal, 11: 191-205 (In Persian).
35. Mohammadabadi, M.R., A.H.D. Jafari and F. Bordbar. 2017. Molecular analysis of CIB4 gene and protein in Kermani sheep. Brazilian Journal of Medical and Biological Research, 5: e6177. [DOI:10.1590/1414-431x20176177]
36. Mohammadabadi, M.R. and F. Tohidinejad. 2017. Characteristics determination of Rheb gene and protein in Raini Cashmere goat. Iranian Journal of Applied Animal Science, 7: 289-295.
37. Mogensen, K.E., M. Lewerenz, J. Reboul, G. Lutfalla and G. Uzé. 1999. The type I interferon receptor: structure, function and evolution of a family business. Journal of Interferon and Cytokine Research, 19: 1069-1098. [DOI:10.1089/107999099313019]
38. Nei, M. and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press.
39. Ngandu, N.K., K. Scheffler, P. Moore, Z. Woodman, D. Martin and C. Seoighe. 2008. Extensive purifying selection acting on synonymous sites in HIV-1 Group M sequences. Virology Journal, 5: 1. [DOI:10.1186/1743-422X-5-160]
40. Okuyama Kishima, M., K. Brajão de Oliveira, C.B. Ariza, C.E.C. de Oliveira, R. Losi Guembarovski, B.K. Banin Hirata, F.C. de Almeida, G.A.F. Vitiello, K.P. Trugilo, A.F.M.L. Guembarovski and J.W. Sobrinho. 2015. Genetic polymorphism and expression of CXCR4 in breast cancer. Analytical Cellular Pathology, 2015: 289510. [DOI:10.1155/2015/289510]
41. Pasandideh, M., M.R., Mohammadabadi, A.K. Esmailizadeh and A. Tarang. 2015. Association of bovine PPARGC1A and OPN genes with milk production and composition in Holstein cattle. Czech Journal of Animal Science, 60: 97-104. [DOI:10.17221/8074-CJAS]
42. Petersen, D.C., R.H. Glashoff, S. Shrestha, J. Bergeron, A. Laten, B. Gold, E.J. van Rensburg, M. Dean and V.M. Hayes. 2005. Risk for HIV-1 infection associated with a common CXCL12 (SDF1) polymorphism and CXCR4 variation in an African population. Journal of Acquired Immune Deficiency Syndromes, 40(5): 521. [DOI:10.1097/01.qai.0000186360.42834.28]
43. Petersen, G. and O. Seberg. 2003. Phylogenetic analyses of the diploid species of Hordeum (Poaceae) and a revised classification of the genus. Systematic Botany, 28: 293-306.
44. Phuphuakrat, A. and P. Auewarakul. 2003. Heterogeneity of HIV-1 Rev response element. AIDS Research and Human Retroviruses, 19: 569-574. [DOI:10.1089/088922203322230932]
45. Pitt, D., N. Sevane, E.L. Nicolazzi, D.E. MacHugh, S.D.E. Park, L. Colli, R. Martinez, M.W. Bruford and P. Orozco-terWengel. 2019. Domestication of cattle: two or three events? Evolutionary Applications, 12(1): 123-136. doi: 10.1111/eva.12674. [DOI:10.1111/eva.12674]
46. Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30: 2725-2729. [DOI:10.1093/molbev/mst197]
47. Teng, Y.H., T.H. Liu, H.C. Tseng, T.T. Chung, C.M. Yeh, Y.C. Li, Y.H. Ou, L.Y. Lin, H.T. Tsai and S.F. Yang. 2009. Contribution of genetic polymorphisms of stromal cell-derived factor‐1 and its receptor, CXCR4, to the susceptibility and clinicopathologic development of oral cancer. Head and Neck: Journal for the Sciences and Specialties of the Head and Neck, 31(10): 1282-1288. [DOI:10.1002/hed.21094]
48. Tohidi nezhad, F., M.R. Mohammadabadi, A.K. Esmailizadeh and A. Najmi Noori. 2015. Comparison of different levels of Rheb gene expression in different tissues of Raini Cashmir goat. Journal of Agriculture Biotechnology, 6: 35-50 (In Persian).
49. Yang, L., R. Guo, Z. Ju, X. Wang, Q. Jiang, Y. Liu, H. Zhao, K. He, J. Li and J. Huang. 2019. Production of an aberrant splice variant of CCL5 is not caused by genetic mutation in the mammary glands of mastitis infected Holstein cows. Molecular Medicine Reports, 19(5): 4159-4166. [DOI:10.3892/mmr.2019.10103]
50. Zhang, Z.P., M. Blombäck, N. Egberg, G. Falk and M. Anvret. 1994. Characterization of the von Willebrand factor gene (VWF) in von Willebrand disease type III patients from 24 families of Swedish and Finnish origin. Genomics, 21(1): 188-193. [DOI:10.1006/geno.1994.1241]
51. Zou, Y.R., A.H. Kottmann, M. Kuroda, I. Taniuchi and D.R. Littman. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393: 595. [DOI:10.1038/31269]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به پژوهشهای تولیدات دامی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Research On Animal Production

Designed & Developed by : Yektaweb