دوره 11، شماره 30 - ( زمستان 1399 )                   جلد 11 شماره 30 صفحات 91-83 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه علوم دامی، دانشگاه محقق اردبیلی، اردبیل، ایران
چکیده:   (2408 مشاهده)
کنجاله پنبه­دانه با استفاده از پنج نوع آنزیم آلکالاز، کیموتریپسین، پپسین، تریپسین و پانکراتین هیدرولیز شد. آزمایش با استفاده از 240 قطعه جوجه گوشتی نر سویه راس 308 در قالب یک طرح کاملاً تصادفی با چهار تیمار و پنج تکرار از سن یک تا 35روزگی و طی دو دوره پرورش آغازین (15-1روزگی) و رشد (35-16روزگی) انجام گرفت. جیره­ های آزمایشی عبارت بودند از جیره کنترل، جیره کنترل دارای آنتی بیوتیک محرک رشد زینک باسیتراسین (mg/kg 70( و جیره­ های آزمایشی حاوی 15 یا 20 گرم در کیلوگرم پپتید زیست­ فعال کنجاله پنبه­ دانه که جایگزین مقادیر برابری از ذرت و کنجاله سویای جیره شدند. مصرف خوراک، اضافه وزن بدن و ضریب تبدیل غذایی برای هر قفس (تکرار) طی سه دوره پرورشی (آغازین، رشد و کل دوره) اندازه ­گیری و محاسبه شدند. در سن 35روزگی، از سیاهرگ بال 3 قطعه پرنده در هر تکرار مقدار پنج میلی‌لیتر خون جهت اندازه‌گیری فراسنجه‌های آنتی‌اکسیدانی سرم خون تهیه شد. در پایان دوره پرورش تعداد سه پرنده از هر قفس به­ طور انفرادی وزن‌کشی و کشتار شدند و وزن نسبی اجزای لاشه، اندام­ های گوارشی و لنفوئیدی و همچنین طول قسمت‌های مختلف روده کوچک اندازه‌گیری شد. در کل دوره‌ی آزمایش بیشترین و کمترین اضافه وزن به ­ترتیب در گروه­ آنتی‌بیوتیک و گروه کنترل ثبت شدند و گروه‌های دارای آنتی ­بیوتیک و پپتید مصرف خوراک و همچنین ضریب تبدیل غذایی بالاتری نسبت به گروه کنترل داشتند. غلظت نیتریک اکسید سرم در گروه دریافت ­کننده 15 گرم در کیلوگرم پپتید بالاتر از گروه کنترل و همچنین گروه دریافت ­کننده‌ی آنتی ­بیوتیک بود. غلظت مالون‌دی ­آلدئید در گـروه­ های دریافت­ کننده آنتی‌بیوتیک و یا پپتید پایین­تر از گروه کنترل بود و غلظت گلوتاتیون پراکسیداز در دو گروه دریافت ­کننده آنتی­بیوتیک و سطح 15 گرم در کیلوگرم پپتید کنجاله پنبه ­دانه بالاتر از دو گروه دیگر بود. غلظت سوپراکسید دیسموتاز سرم در گروه ­های دریافت­ کننده آنتی­ بیوتیک و یا سطوح مختلف پپتید بالاتر از گروه کنترل بود و غلظت کل آنتی­ اکسیدان­ های سرم تحت تاثیر جیره‌های آزمایشی قرار نگرفت. مصرف آنتی­ بیوتیک و همچنین پپتید باعث کاهش معنی­ دار چربی حفره شکمی در مقایسه با گروه کنترل شد. نتایج تحقیق حاضر نشان داد که پپتیدهای زیست ­فعال کنجاله پنبه ­دانه تولیدشده توسط هیدرولیز آنزیمی باعث بهبود عملکرد رشد و همچنین فراسنجه‌های آنتی اکسیدانی سرم خون جوجه ­های گوشتی می­ شوند. این نتایج پیشنهاد می­ نمایند که پپتیدهای زیست ­فعال کنجاله پنبه­ دانه پتانسیل استفاده به­ عنوان جایگزین آنتی ­بیوتیک­ محرک رشد در جیره‌ی جوجه ­های گوشتی را دارا است.
متن کامل [PDF 595 kb]   (796 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فیزیولوژی
دریافت: 1399/1/4 | ویرایش نهایی: 1399/12/19 | پذیرش: 1399/5/13 | انتشار: 1399/12/19

فهرست منابع
1. Abdollahi, M.R., F. Zaefarian, Y. Gu, W. Xiao, J. Jia and V. Ravindran. 2017. Influence of soybean bioactive peptides on growth performance, nutrient utilisation, digestive tract development and intestinal histology in broilers. Journal of Applied Animal Nutrition, 5: e7. [DOI:10.1017/JAN.2017.6]
2. Abdollahi, M.R., F. Zaefarian, Y. Gu, W. Xiao, J. Jia and V. Ravindran. 2018. Influence of soybean bioactive peptides on performance, foot pad lesions and carcass characteristics in broilers. Journal of Applied Animal Nutrition, 6: e3. [DOI:10.1017/JAN.2018.1]
3. Alashi, A.M., C.L. Blanchard, R.J. Mailer, S.O. Agboola, A.J. Mawson, R. He, A. Girgih and R.E. Aluko. 2014. Antioxidant properties of australian canola meal protein hydrolysates. Food Chemistry, 146: 500-506. [DOI:10.1016/j.foodchem.2013.09.081]
4. Aviagen. 2014. Ross Broiler Management Handbook. Aviagen Group, Huntsville, AL 35806.
5. Bellaloui, N. and R.B. Turley. 2013. Effects of fuzzless cottonseed phenotype on cottonseed nutrient composition in near isogenic cotton (Gossypium hirsutum L.) mutant lines under well-watered and water stress conditions. Frontiers in Plant Science, 4: 516. [DOI:10.3389/fpls.2013.00516]
6. Benzie, I.F.F. and J.J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical biochemistry, 239(1): 70-76. [DOI:10.1006/abio.1996.0292]
7. Bhabak, K.P. and G. Mugesh. 2010. Functional mimics of glutathione peroxidase: Bioinspired synthetic antioxidants. Accounts of Chemical Reseqarch, 43(11): 1408-1419. [DOI:10.1021/ar100059g]
8. Bolek, Y., H. Tekerek, K. Hayat and A. Bardak. 2016. Screening of cotton genotypes for protein content, oil, and fatty acid composition. Journal of Agricultural Science, 8(7): 107-122. [DOI:10.5539/jas.v8n5p107]
9. Deutz, N.E., C.F. Welters and P.B. 1996. Intragastric bolus feeding of meals containing elementary, partially hydrolyzed, or intact protein causes comparable changes in interorgan substrate flux in the pig. Clinical Nutrition, 15(3): 119-128. [DOI:10.1016/S0261-5614(96)80036-7]
10. Feng, J., X. Liu, Z.R. Xu, Y.Y. Liu and Y.P. Lu. 2007. Effects of aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Animal Feed Science and Technology, 134(3): 295-303. [DOI:10.1016/j.anifeedsci.2006.10.004]
11. Gao, D., Y. Cao and H. Li. 2010. Antioxidant activity of peptide fractions derived from cottonseed protein hydrolysate. Journal of the Science of Food and Agriculture, 90(11): 1855-1860. [DOI:10.1002/jsfa.4024]
12. Ghezzi, P. 2011. Role of glutathione in immunity and inflammation in the lung. International Journal of General Medicine, 4: 105-113. [DOI:10.2147/IJGM.S15618]
13. Hafeman, D.G., R.A. Sunde and W.G. Hoekstra. 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. Journal of Nutrition, 104(5): 580-587. [DOI:10.1093/jn/104.5.580]
14. Hu, Y., Y. Wang, A. Li, Z. Wang, X. Zhang, T. Yun, L. Qiu and Y. Yin. 2016. Effects of fermented rapeseed meal on antioxidant functions, serum biochemical parameters and intestinal morphology in broilers. Food and Agricultural Immunology, 27(2): 182-193. [DOI:10.1080/09540105.2015.1079592]
15. Janero, D.R. 1990. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology and Medicine, 9(6): 515-540. [DOI:10.1016/0891-5849(90)90131-2]
16. Jazi, V., F. Boldaji, B. Dastar, S.R. Hashemi and A. Ashayerizadeh. 2017. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. British Poultry Science, 58: 402-408. [DOI:10.1080/00071668.2017.1315051]
17. Jensen, C., R. Engberg, K. Jakobsen, L.H. Skibsted and G. Bertelsen. 1997. Influence of the oxidative quality of dietary oil on broiler meat storage stability. Meat Science, 47(4): 211-222. [DOI:10.1016/S0309-1740(97)00052-1]
18. Kamnerdpetch, C., M. Weiss, C. Kasper and T. Scheper. 2007. An improvement of potato pulp protein hydrolyzation process by the combination of protease enzyme systems. Enzyme and Microbial Technology, 40(4): 508-514. [DOI:10.1016/j.enzmictec.2006.05.006]
19. Karimzadeh, S., M. Rezaei and A. Teimouri Yansari. 2016. Effects of canola bioactive peptides on performance, digestive enzyme activities, nutrient digestibility, intestinal morphology, and gut microflora in broiler chickens. Poultry Science Journal, 4(1): 27-36.
20. Kim, S.K., Y.T. Kim, H.G. Byun, K.S. Nam, D.S. Joo and F. Shahidi. 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of Agriculture and Food Chemistry, 49(4): 1984-1989. [DOI:10.1021/jf000494j]
21. Kitts, D.D. and K. Weiler. 2005. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Current pharmaceutical design, 9: 1309-1323. [DOI:10.2174/1381612033454883]
22. Mathivanan, R., P. Selvaraj and K. Nanjappan. 2006. Feeding of fermented soybean meal on broiler performance. International Journal of Poultry Science, 9(5): 868-872. [DOI:10.3923/ijps.2006.868.872]
23. Mohammadrezaei, M., B. Navidshad, A. Gheisari and M. Toghyani. 2020. Cottonseed meal bioactive peptides as an alternative to antibiotic growth promoters in broiler chicks. International Journal of Peptide Research and Therapeutics, 2020: 10086. [DOI:10.1007/s10989-020-10086-8]
24. Nie, C., W. Zhang, W. Ge, Y. Wang, Y. Liu and J. Liu. 2015. Effects of fermented cottonseed meal on the growth performance, apparent digestibility, carcass traits, and meat composition in yellow-feathered broilers. Turkish Journal of Veterinary and Animal Sciences, 39: 350-356. [DOI:10.3906/vet-1410-65]
25. Niu, J.L., J. Zhang, L.Q. Wei, W.J. Zhang and C.X. Nie. 2019. Effect of fermented cottonseed meal on the lipid-related indices and serum metabolic profiles in broiler chickens. Animals, 9: 930. [DOI:10.3390/ani9110930]
26. Pacheco, W.J., C.R. Stark, P.R. Ferket and J. Brake. 2014. Effects of trypsin inhibitor and particle size of expeller-extracted soybean meal on broiler live performance and weight of gizzard and pancreas. Poultry Science, 93(9): 2245-2252. [DOI:10.3382/ps.2014-03986]
27. Rajapakse, N., E. Mendis, H.G. Byun and S.K. Kim. 2005. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. Journal of Nutritional Biochemistry, 16(9): 562-569. [DOI:10.1016/j.jnutbio.2005.02.005]
28. Santoso, U., K. Tanaka and S. Ohtani. 1995. Effect of dried bacillus subtilis culture on growth, body composition and hepatic lipogenic enzyme activity in female broiler chicks. British Journal of Nutrition, 74(4): 523-529. [DOI:10.1079/BJN19950155]
29. SAS Institute. 2016. SAS version 9.4 - University Edition. SAS Inst. Inc.
30. seifi, M., M. Rezaei and A. Teimouri Yansari. 2018. Effect of different levels of soybean meal peptides on performance, intestinal morphology, and intestinal bacterial population in broiler chicks. Research on Animal Production, 9(22): 9-17 (In Persian). [DOI:10.29252/rap.9.22.9]
31. Shahidi, F. and Y. Zhong. 2008. Bioactive peptides. Journal of AOAC International, 91: 914-931. [DOI:10.1093/jaoac/91.4.914]
32. Sharma, S., R. Singh and S. Rana. 2011. Review article bioactive peptides: A review. International Journal of Bioautomation, 15: 223-250.
33. Singh, R. and Geetanjali. 2016. Protein Byproducts. Elsevier Inc.
34. Soleymanzadeh, N., S. Mirdamadi and M. Kianirad. 2016. Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Science and Technology, 96(4): 443-457. [DOI:10.1007/s13594-016-0278-1]
35. Sugiharto, S. and S. Ranjitkar. 2019. Recent advances in fermented feeds towards improved broiler chicken performance, gastrointestinal tract microecology and immune responses: A review. Animal Nutrition, 5(1): 1-10. [DOI:10.1016/j.aninu.2018.11.001]
36. Swiatkiewicz, S., A. Arczewska-Wlosek and D. Józefiak. 2016. The use of cottonseed meal as a protein source for poultry: An updated review. Worlds Poult.ry Science Journal, 72(3): 473-484. [DOI:10.1017/S0043933916000258]
37. Wang, J.P., N. Liu, M.Y. Song, C.L. Qin and C.S. Ma. 2011. Effect of enzymolytic soybean meal on growth performance, nutrient digestibility, and immune function of growing broilers. Animal Feed Science and Technology, 169: 224-229. [DOI:10.1016/j.anifeedsci.2011.06.012]
38. Wang, L.C., C. Wen, Z.Y. Jiang and Y.M. Zhou. 2012. Evaluation of the partial replacement of highprotein feedstuff with fermented soybean meal in broiler diets. Journal of Applied Poultry Research, 21(4): 849-855. [DOI:10.3382/japr.2012-00563]
39. Wang, Y., Q. Deng, D. Song, W. Wang, H. Zhou, L. Wang and A. Li. 2017. Effects of fermented cottonseed meal on growth performance, serum biochemical parameters, immune functions, antioxidative abilities, and cecal microflora in broilers. Food and Agricultural Immunology, 28(4): 725-738. [DOI:10.1080/09540105.2017.1311308]
40. Winterbourn, C.C., R.E. Hawkins, M. Brian and R.W. Carrell. 1975. The estimation of red cell superoxide dismutase activity. Journal of Laboratory and Clinical Medicine, 85(2): 337-341.
41. Xu, L., B. Du and B. Xu. 2015. A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China. Food Chemistry, 174: 202-213. [DOI:10.1016/j.foodchem.2014.11.014]
42. Yang, R., W. Li, Y.H. Shi and G.W. Le. 2008. Lipoic acid prevents high-fat diet-induced dyslipidemia and oxidative stress: A microarray analysis. Nutrition, 24: 582-588. [DOI:10.1016/j.nut.2008.02.002]
43. Yuan, D., Z. Tang, M. Wang, W. Gao, L. Tu, X. Jin, L. Chen, Y. He, L. Zhang, L. Zhu, Y. Li, Q. Liang, Z. Lin, X. Yang, N. Liu, S. Jin, Y. Lei, Y. Ding, G. Li, X. Ruan, Y. Ruan and X. Zhang. 2015. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibre. Scientific Reports, 4(5): 17662. [DOI:10.1038/srep17662]
44. Zarei, M., A. Ebrahimpour, A. Abdul-Hamid, F. Anwar and N. Saari. 2012. Production of defatted palm kernel cake protein hydrolysate as a valuable source of natural antioxidants. International Journal of Molecular Science, 13(7): 8097-8111. [DOI:10.3390/ijms13078097]
45. Zhang, B., Y. Cui, G. Yin, X. Li and Y. You. 2010. Synthesis and swelling properties of hydrolyzed cottonseed protein composite superabsorbent hydrogel. International Journal of Polymeric Materials and Polymeric Biomaterials, 59(12): 1018-1032. [DOI:10.1080/00914031003760709]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.