دوره 10، شماره 24 - ( تابستان 1398 )                   جلد 10 شماره 24 صفحات 17-10 | برگشت به فهرست نسخه ها


XML English Abstract Print


چکیده:   (3526 مشاهده)
      این آزمایش به منظور مقایسه اثر افزودن فوکوئیدان، پروبیوتیک و آنتی‏بیوتیک در جیره بر عملکرد، خصوصیات لاشه، جمعیت میکروبی دستگاه گوارش و فراسنجه ‏های خون جوجه‏ های گوشتی انجام شد. تعداد 250 قطعه جوجه نر یک روزه سویه راس 308 در قالب طرح کاملاً تصادفی در پنج تیمار آزمایشی با پنج تکرار توزیع و به مدت 24 روز پرورش یافتند. پس از تهیه یک جیره پایه ذرت-سویا، تیمارهای غذایی حاوی 1) بدون افزودنی (تیمار شاهد)، 2) 02/0 درصد آنتی‏بیوتیک اکسی تتراسایکلین، 3) 05/0 درصد پری‏بیوتیک فوکوئیدان، 4) 02/0 درصد پروبیوتیک گالیپرو و 5) 05/0 درصد پری‏بیوتیک فوکوئیدان و 02/0 درصد پروبیوتیک گالیپرو (تیمار سین‏بیوتیک) فراهم شد. استفاده از آنتی‏ بیوتیک توانست افزایش وزن و ضریب تبدیل خوراک پرندگان را در پایان روز 10 و 24 آزمایش نسبت به تیمار شاهد بهبود دهد، درحالیکه استفاده از پروبیوتیک تنها در بهبود ضریب تبدیل خوراک موثر بود (05/0 > p). استفاده از فوکوئیدان و سین‏بیوتیک فقط به صورت عددی سبب بهبود افزایش وزن (به ترتیب به میزان 88/3 و 76/3 درصد) و ضریب تبدیل خوراک (به ترتیب میزان 31/2 و 73/4 درصد) در پایان 24 روزگی شدند. در پرندگان تحت تیمار سین‏بیوتیک در مقایسه با تیمار شاهد، وزن نسبی چربی شکمی کاهش و وزن نسبی بورس فابرسیوس افزایش یافت (05/0 > p). افزودنی ‏های آنتی‏ بیوتیک و سین‏بیوتیک جمعیت باکتری‏ های کلی‏فرم را در ایلئوم نسبت به تیمار شاهد کاهش دادند (05/0 > p). تیمارهای پروبیوتیک و سین‏بیوتیک در مقایسه با تیمار آنتی ‏بیوتیک جمعیت باکتری‏ های اسیدلاکتیکی ایلئوم را افزایش و غلظت کلسترول سرم را کاهش دادند (05/0 > p). همچنین فعالیت آنزیم آلکالین فسفاتاز سرم در تیمارهای پروبیوتیک و سین‏بیوتیک نسبت به تیمار شاهد بالاتر بود (05/0 > p).  نتایج آزمایش حاضر نشان داد که پری‏بیوتیک فوکوئیدان می‏ تواند بواسطه اثر همکوشی با پروبیوتیک ‏ها به عنوان جایگزین آنتی‏ بیوتیک‏ های محرک رشد جهت بهبود  رشد و جمعیت میکروبی دستگاه گوارش توصیه شود.
متن کامل [PDF 759 kb]   (797 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تغذیه طیور
دریافت: 1397/11/17 | ویرایش نهایی: 1398/6/27 | پذیرش: 1398/2/31 | انتشار: 1398/6/27

فهرست منابع
1. Ahmadi, M. and M.A. Karimi Torshizi. 2016. Effects of dietary vermi-humus in comparison to virginiamycin on performance and small intestinal morphometric parameters in Japanese Quails. Research on Animal Production, 7: 77-86 (In Persian). [DOI:10.18869/acadpub.rap.7.13.86]
2. Al-Khalaifah, H.S. 2018. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry, Poultry Science, 97:3807-3815. [DOI:10.3382/ps/pey160]
3. Alkhalf, A., M. Alhaj and I. Al-homidan. 2010. Influence of probiotic supplementation on blood parameters and growth performance in broiler chickens. Saudi Journal of Biological Sciences, 17: 219-225. [DOI:10.1016/j.sjbs.2010.04.005]
4. Allahdo, P., J. Ghodraty, H. Zarghi, Z. Saadatfar, H. Kermanshahi and M.R. Edalatian Dovom. 2018. Effect of probiotic and vinegar on growth performance, meat yields, immune responses, and small intestine morphology of broiler chickens. Italian Journal of Animal Science, 17: 675-685. [DOI:10.1080/1828051X.2018.1424570]
5. Ashayerizadeh, O., B. Dastar, F. Samadi, M. Khomeiri, A. Yamchi and S. Zerehdaran. 2017. Study on the chemical and microbial composition and probiotic characteristics of dominant lactic acid bacteria in fermented poultry slaughterhouse waste. Waste Management, 65: 178-185. [DOI:10.1016/j.wasman.2017.04.017]
6. Aviagen. 2014. Ross 308 Broiler: Nutrition Specifications. Aviagen Limited, Newbridge, Midlothian EH28 8SZ, Scotland, UK.
7. Busher, J.T. 1990. Serum Albumin and Globulin. In: H. K. Walker, W. D. Hall and J. W. Hurst (eds).Clinical Methods: The History, Physical, and Laboratory Examinations. Butterworths Publishers, a division of Reed Publishing. Boston, pp: 497-499.
8. Chopra, L. and M. Roberts. 2001. Tetracycline Antibiotics: Mode of action, applications, molecular biology and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65: 232-260. [DOI:10.1128/MMBR.65.2.232-260.2001]
9. FAO/WHO. 2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, American Córdoba Park Hotel, Córdoba, Argentina.
10. Gibson, G.R., R. Hutkins, M.E. Sanders, S.L. Prescott, R.A. Reimer, S.J. Salminen, K. Scott, C. Stanton, K.S. Swanson, P.D. Cani, K. Verbeke and G. Reid. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews. Gastroenterology and Hepatology, 14: 491-502. [DOI:10.1038/nrgastro.2017.75]
11. Guetiya Wadoum, R.E., N.F. Zambou, F.F. Anyangwe, J.R. Njimou, M.M. Coman, M. C. Verdenelli, C. Cecchini, S. Silvi, C. Orpianesi, A. Cresci and V. Colizzi. 2016. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. British Poultry Science, 57: 483-493. [DOI:10.1080/00071668.2016.1180668]
12. Heim, G., T. Sweeney, C.J. O'Shea, D.N. Doyle and J.V. O'Doherty. 2015. Effect of maternal dietary supplementation of laminarin and fucoidan, independently or in combination, on pig growth performance and aspects of intestinal health. Animal Feed Science and Technology, 204: 28-41. [DOI:10.1016/j.anifeedsci.2015.02.007]
13. Huyghebaert, G. and M. Pack. 1996. Effects of dietary protein content, addition of nonessential amino acids and dietary methionine to cysteine balance on responses to dietary sulphur‐containing amino acids in broilers. British Poultry Science 37: 623-639. [DOI:10.1080/00071669608417892]
14. Khadem, A., L. Soler, N. Everaert and T.A. Niewold. 2014. Growth promotion in broilers by both oxytetracycline and Macleaya cordata extract is based on their anti-inflammatory properties. British Journal of Nutrition, 112: 1110-1118. [DOI:10.1017/S0007114514001871]
15. Khatibjoo, A., M. Mahmoodi, F. Fattahnia, M. Akbari-Gharaei, A.N. Shokri and S. Soltani. 2018. Effects of dietary short- and medium-chain fatty acids on performance, carcass traits, jejunum morphology and serum parameters of broiler chickens. Journal of Applied Animal Research, 46: 492-498. [DOI:10.1080/09712119.2017.1345741]
16. Lee, K.Y., M.R. Jeong, S.M. Choi, S.S. Na and J.D. Cha. 2013. Synergistic effect of fucoidan with antibiotics against oral pathogenic bacteria. Archives of Oral Biology, 58: 482-492. [DOI:10.1016/j.archoralbio.2012.11.002]
17. Lim, S.J., W.M. Wan Aida, S. Schiehser, T. Rosenau and S. Böhmdorfer. 2019. Structural elucidation of fucoidan from Cladosiphon okamuranus (Okinawa mozuku). Food Chemistry, 272: 222-226. [DOI:10.1016/j.foodchem.2018.08.034]
18. Manafi, M., S. Khalaji, M. Hedayati and N. Pirany. 2017. Efficacy of Bacillus subtilis and bacitracin methylene disalicylate on growth performance, digestibility, blood metabolites, immunity, and intestinal microbiota after intramuscular inoculation with Escherichia coli in broilers. Poultry Science, 96: 1174-1183. [DOI:10.3382/ps/pew347]
19. Mehdi, Y., M.P. Létourneau-Montminy, M.L. Gaucher, Y. Chorfi, G. Suresh, T. Rouissi, S.K. Brar, C. Côté, A.A. Ramirez and S. Godbout. 2018. Use of antibiotics in broiler production: Global impacts and alternatives. Animal Nutrition, 4: 170-178. [DOI:10.1016/j.aninu.2018.03.002]
20. Morey, A., C.L. Bratcher, M. Singh and S.R. McKee. 2012. Effect of liquid smoke as an ingredient in frankfurters on Listeria monocytogenes and quality attributes. Poultry Science, 91: 2341-2350. [DOI:10.3382/ps.2012-02251]
21. Palanisamy, S., M. Vinosha, T. Marudhupandi, P. Rajasekar and N.M. Prabhu. 2017. In vitro antioxidant and antibacterial activity of sulfated polysaccharides isolated from Spatoglossum asperum. Carbohydrate Polymers, 170: 296-304. [DOI:10.1016/j.carbpol.2017.04.085]
22. Park, J., M. Yeom and D.H. Hahm. 2016. Fucoidan improves serum lipid levels and atherosclerosis through hepatic SREBP-2-mediated regulation. Journal of Pharmacological Sciences, 13: 84-92. [DOI:10.1016/j.jphs.2016.03.007]
23. Park, J.H. and I.H. Kim. 2014. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poultry Science, 93: 2054-2059. [DOI:10.3382/ps.2013-03818]
24. Pereira, D.I.A. and G.R. Gibson. 2002. Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Applied and Environmental Microbiology, 68: 4689. [DOI:10.1128/AEM.68.9.4689-4693.2002]
25. Rahimi, S.H. and A. Khaksefidi. 2006. A comparison of the effects of probiotic (Bioplus 2B) and an antibiotic (Virginiamycin) on performance of broiler chicks under heat stress condition. Iranian Journal of Veterinary Research, 7: 23-28.
26. Sarac, F. and F. Saygili. 2007. Causes of high bone alkaline phosphatase. Biotechnology and Biotechnological Equipment, 21: 194-197. [DOI:10.1080/13102818.2007.10817444]
27. SAS. 2009. User's Guide: Statistics, Version 9.2. SAS Inst, Inc., Cary, NC, US.
28. Sohail, M.U., A. Ijaz, M. Younus, M.Z. Shabbir, Z. Kamran, S. Ahmad, H. Anwar, M.S. Yousaf, K. Ashraf, A.H. Shahzad and H. Rehman. 2013. Effect of supplementation of mannan oligosaccharide and probiotic on growth performance, relative weights of viscera, and population of selected intestinal bacteria in cyclic heat-stressed broilers. The Journal of Applied Poultry Research, 22: 485-491. [DOI:10.3382/japr.2012-00682]
29. Sweeney, T., H. Meredith, S. Vigors, M.J. McDonnell, M. Ryan, K. Thornton and J.V. O'Doherty. 2017. Extracts of laminarin and laminarin/fucoidan from the marine macroalgal species Laminaria digitata improved growth rate and intestinal structure in young chicks, but does not influence Campylobacter jejuni colonisation. Animal Feed Science and Technology, 232: 71-79. [DOI:10.1016/j.anifeedsci.2017.08.001]
30. Tavaniello, S., G. Maiorano, K. Stadnicka, R. Mucci, J. Bogucka and M. Bednarczyk. 2018. Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poultry Science, 97: 2979-2987. [DOI:10.3382/ps/pey149]
31. Teo, A.Y. and H.M. Tan. 2007. Evaluation of the performance and intestinal gut microflora of broilers fed on corn-soy diets supplemented with bacillus subtilis PB6 (CloSTAT). Journal of Applied Poultry, 16: 296-303. [DOI:10.1093/japr/16.3.296]
32. Walsh, A.M., T. Sweeney, C.J. O'Shea, D.N. Doyle and J.V.O. 'Doherty. 2013. Effect of supplementing varying inclusion levels of laminarin and fucoidan on growth performance, digestibility of diet components, selected faecal microbial populations and volatile fatty acid concentrations in weaned pigs. Animal Feed Science and Technology, 183: 151-159. [DOI:10.1016/j.anifeedsci.2013.04.013]
33. Wang, C.Y., T.C. Wu, S.L. Hsieh, Y.H. Tsai, C.W. Yeh and C.Y. Huang. 2015. Antioxidant activity and growth inhibition of human colon cancer cells by crude and purified fucoidan preparations extracted from Sargassum cristaefolium. Journal of Food and Drug Analysis, 23: 766-777. [DOI:10.1016/j.jfda.2015.07.002]
34. Wang, S., Q. Peng, H.M. Jia, X.F. Zeng, J.L. Zhu, C.L. Hou, X.T. Liu, F.J. Yang and S.Y. Qiao. 2017. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1. Poultry Science, 96: 2576-2586. [DOI:10.3382/ps/pex061]
35. Zaghari, M., N. Zahroojian, M. Riahi and S. Parhizkar. 2015. Effect of bacillus subtilis spore (gallipro®) nutrients equivalency value on broiler chicken performance. Italian Journal of Animal Science, 14: 3555. [DOI:10.4081/ijas.2015.3555]
36. Ziar-Larimi, A., M. Rezaei, Y. Chashnidel, B. Zarei-Darki and A. Farhadi. 2018. Effect of different levels of chlorella vulgaris microalgae extract on performance in heat-stressed broilers. Research on Animal Production, 8: 20-29 (In Persian).
37. Zhai, L. and X. Wang. 2018. Syringaresinol‑di‑O‑β‑D‑glucoside, a phenolic compound from Polygonatum sibiricum, exhibits an antidiabetic and antioxidative effect on a streptozotocin‑induced mouse model of diabetes. Molecular Medicine Reports, 18: 5511-5519. [DOI:10.3892/mmr.2018.9580]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.